MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressinbas Structured version   Visualization version   Unicode version

Theorem ressinbas 15936
Description: Restriction only cares about the part of the second set which intersects the base of the first. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypothesis
Ref Expression
ressid.1  |-  B  =  ( Base `  W
)
Assertion
Ref Expression
ressinbas  |-  ( A  e.  X  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )

Proof of Theorem ressinbas
StepHypRef Expression
1 elex 3212 . 2  |-  ( A  e.  X  ->  A  e.  _V )
2 eqid 2622 . . . . . . 7  |-  ( Ws  A )  =  ( Ws  A )
3 ressid.1 . . . . . . 7  |-  B  =  ( Base `  W
)
42, 3ressid2 15928 . . . . . 6  |-  ( ( B  C_  A  /\  W  e.  _V  /\  A  e.  _V )  ->  ( Ws  A )  =  W )
5 ssid 3624 . . . . . . . 8  |-  B  C_  B
6 incom 3805 . . . . . . . . 9  |-  ( A  i^i  B )  =  ( B  i^i  A
)
7 df-ss 3588 . . . . . . . . . 10  |-  ( B 
C_  A  <->  ( B  i^i  A )  =  B )
87biimpi 206 . . . . . . . . 9  |-  ( B 
C_  A  ->  ( B  i^i  A )  =  B )
96, 8syl5eq 2668 . . . . . . . 8  |-  ( B 
C_  A  ->  ( A  i^i  B )  =  B )
105, 9syl5sseqr 3654 . . . . . . 7  |-  ( B 
C_  A  ->  B  C_  ( A  i^i  B
) )
11 elex 3212 . . . . . . 7  |-  ( W  e.  _V  ->  W  e.  _V )
12 inex1g 4801 . . . . . . 7  |-  ( A  e.  _V  ->  ( A  i^i  B )  e. 
_V )
13 eqid 2622 . . . . . . . 8  |-  ( Ws  ( A  i^i  B ) )  =  ( Ws  ( A  i^i  B ) )
1413, 3ressid2 15928 . . . . . . 7  |-  ( ( B  C_  ( A  i^i  B )  /\  W  e.  _V  /\  ( A  i^i  B )  e. 
_V )  ->  ( Ws  ( A  i^i  B ) )  =  W )
1510, 11, 12, 14syl3an 1368 . . . . . 6  |-  ( ( B  C_  A  /\  W  e.  _V  /\  A  e.  _V )  ->  ( Ws  ( A  i^i  B ) )  =  W )
164, 15eqtr4d 2659 . . . . 5  |-  ( ( B  C_  A  /\  W  e.  _V  /\  A  e.  _V )  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
17163expb 1266 . . . 4  |-  ( ( B  C_  A  /\  ( W  e.  _V  /\  A  e.  _V )
)  ->  ( Ws  A
)  =  ( Ws  ( A  i^i  B ) ) )
18 inass 3823 . . . . . . . . 9  |-  ( ( A  i^i  B )  i^i  B )  =  ( A  i^i  ( B  i^i  B ) )
19 inidm 3822 . . . . . . . . . 10  |-  ( B  i^i  B )  =  B
2019ineq2i 3811 . . . . . . . . 9  |-  ( A  i^i  ( B  i^i  B ) )  =  ( A  i^i  B )
2118, 20eqtr2i 2645 . . . . . . . 8  |-  ( A  i^i  B )  =  ( ( A  i^i  B )  i^i  B )
2221opeq2i 4406 . . . . . . 7  |-  <. ( Base `  ndx ) ,  ( A  i^i  B
) >.  =  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i  B )
>.
2322oveq2i 6661 . . . . . 6  |-  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )  =  ( W sSet  <. (
Base `  ndx ) ,  ( ( A  i^i  B )  i^i  B )
>. )
242, 3ressval2 15929 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  _V )  ->  ( Ws  A )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
)
25 inss1 3833 . . . . . . . . 9  |-  ( A  i^i  B )  C_  A
26 sstr 3611 . . . . . . . . 9  |-  ( ( B  C_  ( A  i^i  B )  /\  ( A  i^i  B )  C_  A )  ->  B  C_  A )
2725, 26mpan2 707 . . . . . . . 8  |-  ( B 
C_  ( A  i^i  B )  ->  B  C_  A
)
2827con3i 150 . . . . . . 7  |-  ( -.  B  C_  A  ->  -.  B  C_  ( A  i^i  B ) )
2913, 3ressval2 15929 . . . . . . 7  |-  ( ( -.  B  C_  ( A  i^i  B )  /\  W  e.  _V  /\  ( A  i^i  B )  e. 
_V )  ->  ( Ws  ( A  i^i  B ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i 
B ) >. )
)
3028, 11, 12, 29syl3an 1368 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  _V )  ->  ( Ws  ( A  i^i  B ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( ( A  i^i  B )  i^i 
B ) >. )
)
3123, 24, 303eqtr4a 2682 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  _V  /\  A  e.  _V )  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
32313expb 1266 . . . 4  |-  ( ( -.  B  C_  A  /\  ( W  e.  _V  /\  A  e.  _V )
)  ->  ( Ws  A
)  =  ( Ws  ( A  i^i  B ) ) )
3317, 32pm2.61ian 831 . . 3  |-  ( ( W  e.  _V  /\  A  e.  _V )  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
34 reldmress 15926 . . . . . 6  |-  Rel  doms
3534ovprc1 6684 . . . . 5  |-  ( -.  W  e.  _V  ->  ( Ws  A )  =  (/) )
3634ovprc1 6684 . . . . 5  |-  ( -.  W  e.  _V  ->  ( Ws  ( A  i^i  B
) )  =  (/) )
3735, 36eqtr4d 2659 . . . 4  |-  ( -.  W  e.  _V  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
3837adantr 481 . . 3  |-  ( ( -.  W  e.  _V  /\  A  e.  _V )  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
3933, 38pm2.61ian 831 . 2  |-  ( A  e.  _V  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
401, 39syl 17 1  |-  ( A  e.  X  ->  ( Ws  A )  =  ( Ws  ( A  i^i  B
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   <.cop 4183   ` cfv 5888  (class class class)co 6650   ndxcnx 15854   sSet csts 15855   Basecbs 15857   ↾s cress 15858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-ress 15865
This theorem is referenced by:  ressress  15938  rescabs  16493  resscat  16512  funcres2c  16561  ressffth  16598  cphsubrglem  22977  suborng  29815
  Copyright terms: Public domain W3C validator