| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ressval3d | Structured version Visualization version Unicode version | ||
| Description: Value of structure restriction, deduction version. (Contributed by AV, 14-Mar-2020.) |
| Ref | Expression |
|---|---|
| ressval3d.r |
|
| ressval3d.b |
|
| ressval3d.e |
|
| ressval3d.s |
|
| ressval3d.f |
|
| ressval3d.d |
|
| ressval3d.a |
|
| ressval3d.u |
|
| Ref | Expression |
|---|---|
| ressval3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressval3d.u |
. 2
| |
| 2 | sspss 3706 |
. . . 4
| |
| 3 | dfpss3 3693 |
. . . . 5
| |
| 4 | 3 | orbi1i 542 |
. . . 4
|
| 5 | 2, 4 | bitri 264 |
. . 3
|
| 6 | simplr 792 |
. . . . . . 7
| |
| 7 | ressval3d.s |
. . . . . . . 8
| |
| 8 | 7 | adantl 482 |
. . . . . . 7
|
| 9 | simpl 473 |
. . . . . . . 8
| |
| 10 | ressval3d.b |
. . . . . . . . . 10
| |
| 11 | fvex 6201 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | eqeltri 2697 |
. . . . . . . . 9
|
| 13 | 12 | a1i 11 |
. . . . . . . 8
|
| 14 | ssexg 4804 |
. . . . . . . 8
| |
| 15 | 9, 13, 14 | syl2an 494 |
. . . . . . 7
|
| 16 | ressval3d.r |
. . . . . . . 8
| |
| 17 | 16, 10 | ressval2 15929 |
. . . . . . 7
|
| 18 | 6, 8, 15, 17 | syl3anc 1326 |
. . . . . 6
|
| 19 | ressval3d.e |
. . . . . . . . . 10
| |
| 20 | 19 | a1i 11 |
. . . . . . . . 9
|
| 21 | df-ss 3588 |
. . . . . . . . . . . . 13
| |
| 22 | 21 | biimpi 206 |
. . . . . . . . . . . 12
|
| 23 | 22 | eqcomd 2628 |
. . . . . . . . . . 11
|
| 24 | 23 | adantr 481 |
. . . . . . . . . 10
|
| 25 | 24 | adantr 481 |
. . . . . . . . 9
|
| 26 | 20, 25 | opeq12d 4410 |
. . . . . . . 8
|
| 27 | 26 | eqcomd 2628 |
. . . . . . 7
|
| 28 | 27 | oveq2d 6666 |
. . . . . 6
|
| 29 | 18, 28 | eqtrd 2656 |
. . . . 5
|
| 30 | 29 | ex 450 |
. . . 4
|
| 31 | 16 | a1i 11 |
. . . . . . 7
|
| 32 | oveq2 6658 |
. . . . . . . 8
| |
| 33 | 32 | adantr 481 |
. . . . . . 7
|
| 34 | 7 | adantl 482 |
. . . . . . . 8
|
| 35 | 10 | ressid 15935 |
. . . . . . . 8
|
| 36 | 34, 35 | syl 17 |
. . . . . . 7
|
| 37 | 31, 33, 36 | 3eqtrd 2660 |
. . . . . 6
|
| 38 | df-base 15863 |
. . . . . . . 8
| |
| 39 | 1nn 11031 |
. . . . . . . 8
| |
| 40 | ressval3d.f |
. . . . . . . 8
| |
| 41 | ressval3d.d |
. . . . . . . . 9
| |
| 42 | 19, 41 | syl5eqelr 2706 |
. . . . . . . 8
|
| 43 | 38, 39, 7, 40, 42 | setsidvald 15889 |
. . . . . . 7
|
| 44 | 43 | adantl 482 |
. . . . . 6
|
| 45 | 19 | a1i 11 |
. . . . . . . . 9
|
| 46 | simpl 473 |
. . . . . . . . . 10
| |
| 47 | 46, 10 | syl6eq 2672 |
. . . . . . . . 9
|
| 48 | 45, 47 | opeq12d 4410 |
. . . . . . . 8
|
| 49 | 48 | eqcomd 2628 |
. . . . . . 7
|
| 50 | 49 | oveq2d 6666 |
. . . . . 6
|
| 51 | 37, 44, 50 | 3eqtrd 2660 |
. . . . 5
|
| 52 | 51 | ex 450 |
. . . 4
|
| 53 | 30, 52 | jaoi 394 |
. . 3
|
| 54 | 5, 53 | sylbi 207 |
. 2
|
| 55 | 1, 54 | mpcom 38 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-i2m1 10004 ax-1ne0 10005 ax-rrecex 10008 ax-cnre 10009 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-nn 11021 df-ndx 15860 df-slot 15861 df-base 15863 df-sets 15864 df-ress 15865 |
| This theorem is referenced by: estrres 16779 |
| Copyright terms: Public domain | W3C validator |