Proof of Theorem cphsubrglem
Step | Hyp | Ref
| Expression |
1 | | cphsubrglem.1 |
. . 3
 ℂfld
↾s    |
2 | | cphsubrglem.k |
. . . . . 6
     |
3 | 1 | fveq2d 6195 |
. . . . . . 7
        ℂfld ↾s     |
4 | | cphsubrglem.2 |
. . . . . . . . . . . 12
   |
5 | | drngring 18754 |
. . . . . . . . . . . 12
   |
6 | 4, 5 | syl 17 |
. . . . . . . . . . 11
   |
7 | 1, 6 | eqeltrrd 2702 |
. . . . . . . . . 10
 ℂfld ↾s    |
8 | | eqid 2622 |
. . . . . . . . . . 11
   ℂfld ↾s      ℂfld
↾s    |
9 | | eqid 2622 |
. . . . . . . . . . 11
   ℂfld ↾s      ℂfld
↾s    |
10 | 8, 9 | ring0cl 18569 |
. . . . . . . . . 10
 ℂfld ↾s 
   ℂfld ↾s      ℂfld
↾s     |
11 | | reldmress 15926 |
. . . . . . . . . . 11
↾s |
12 | | eqid 2622 |
. . . . . . . . . . 11
ℂfld
↾s  ℂfld ↾s   |
13 | 11, 12, 8 | elbasov 15921 |
. . . . . . . . . 10
    ℂfld
↾s      ℂfld ↾s
 
ℂfld
   |
14 | 7, 10, 13 | 3syl 18 |
. . . . . . . . 9
 ℂfld    |
15 | 14 | simprd 479 |
. . . . . . . 8
   |
16 | | cnfldbas 19750 |
. . . . . . . . 9
  ℂfld |
17 | 12, 16 | ressbas 15930 |
. . . . . . . 8
      ℂfld ↾s
    |
18 | 15, 17 | syl 17 |
. . . . . . 7
  
   ℂfld ↾s     |
19 | 3, 18 | eqtr4d 2659 |
. . . . . 6
         |
20 | 2, 19 | syl5eq 2668 |
. . . . 5
     |
21 | 20 | oveq2d 6666 |
. . . 4
 ℂfld ↾s  ℂfld
↾s      |
22 | 16 | ressinbas 15936 |
. . . . 5
 ℂfld ↾s
 ℂfld ↾s      |
23 | 15, 22 | syl 17 |
. . . 4
 ℂfld ↾s  ℂfld
↾s      |
24 | 21, 23 | eqtr4d 2659 |
. . 3
 ℂfld ↾s  ℂfld
↾s    |
25 | 1, 24 | eqtr4d 2659 |
. 2
 ℂfld
↾s    |
26 | 25, 6 | eqeltrrd 2702 |
. . . 4
 ℂfld ↾s    |
27 | | cnring 19768 |
. . . 4
ℂfld  |
28 | 26, 27 | jctil 560 |
. . 3
 ℂfld
ℂfld ↾s
    |
29 | 12, 16 | ressbasss 15932 |
. . . . . 6
   ℂfld ↾s    |
30 | 3, 29 | syl6eqss 3655 |
. . . . 5
    
  |
31 | 2, 30 | syl5eqss 3649 |
. . . 4

  |
32 | | eqid 2622 |
. . . . . . . . . 10
         |
33 | | eqid 2622 |
. . . . . . . . . 10
         |
34 | 32, 33 | drngunz 18762 |
. . . . . . . . 9
           |
35 | 4, 34 | syl 17 |
. . . . . . . 8
           |
36 | 25 | fveq2d 6195 |
. . . . . . . . 9
        ℂfld ↾s     |
37 | | ringgrp 18552 |
. . . . . . . . . . . 12
ℂfld ℂfld   |
38 | 27, 37 | mp1i 13 |
. . . . . . . . . . 11
 ℂfld   |
39 | | ringgrp 18552 |
. . . . . . . . . . . 12
 ℂfld ↾s 
ℂfld
↾s    |
40 | 26, 39 | syl 17 |
. . . . . . . . . . 11
 ℂfld ↾s    |
41 | 16 | issubg 17594 |
. . . . . . . . . . 11
 SubGrp ℂfld
ℂfld ℂfld
↾s     |
42 | 38, 31, 40, 41 | syl3anbrc 1246 |
. . . . . . . . . 10
 SubGrp ℂfld  |
43 | | eqid 2622 |
. . . . . . . . . . 11
ℂfld
↾s  ℂfld ↾s   |
44 | | cnfld0 19770 |
. . . . . . . . . . 11
  ℂfld |
45 | 43, 44 | subg0 17600 |
. . . . . . . . . 10
 SubGrp ℂfld
   ℂfld ↾s
    |
46 | 42, 45 | syl 17 |
. . . . . . . . 9
    ℂfld ↾s     |
47 | 36, 46 | eqtr4d 2659 |
. . . . . . . 8
       |
48 | 35, 47 | neeqtrd 2863 |
. . . . . . 7
       |
49 | 48 | neneqd 2799 |
. . . . . 6
       |
50 | 2, 33 | ringidcl 18568 |
. . . . . . . . . . . 12

      |
51 | 6, 50 | syl 17 |
. . . . . . . . . . 11
       |
52 | 31, 51 | sseldd 3604 |
. . . . . . . . . 10
       |
53 | 52 | sqvald 13005 |
. . . . . . . . 9
                     |
54 | 25 | fveq2d 6195 |
. . . . . . . . . 10
        ℂfld ↾s     |
55 | 54 | oveq1d 6665 |
. . . . . . . . 9
               ℂfld ↾s          |
56 | 25 | fveq2d 6195 |
. . . . . . . . . . . 12
        ℂfld ↾s     |
57 | 2, 56 | syl5eq 2668 |
. . . . . . . . . . 11
    ℂfld ↾s     |
58 | 51, 57 | eleqtrd 2703 |
. . . . . . . . . 10
        ℂfld ↾s     |
59 | | eqid 2622 |
. . . . . . . . . . 11
   ℂfld ↾s      ℂfld
↾s    |
60 | | fvex 6201 |
. . . . . . . . . . . . 13
     |
61 | 2, 60 | eqeltri 2697 |
. . . . . . . . . . . 12
 |
62 | | cnfldmul 19752 |
. . . . . . . . . . . . 13
  ℂfld |
63 | 43, 62 | ressmulr 16006 |
. . . . . . . . . . . 12
    ℂfld ↾s     |
64 | 61, 63 | ax-mp 5 |
. . . . . . . . . . 11
   ℂfld
↾s    |
65 | | eqid 2622 |
. . . . . . . . . . 11
   ℂfld ↾s      ℂfld
↾s    |
66 | 59, 64, 65 | ringlidm 18571 |
. . . . . . . . . 10
  ℂfld ↾s         ℂfld ↾s
       ℂfld ↾s
             |
67 | 26, 58, 66 | syl2anc 693 |
. . . . . . . . 9
     ℂfld ↾s              |
68 | 53, 55, 67 | 3eqtrd 2660 |
. . . . . . . 8
               |
69 | | sq01 12986 |
. . . . . . . . 9
                 
             |
70 | 52, 69 | syl 17 |
. . . . . . . 8
                           |
71 | 68, 70 | mpbid 222 |
. . . . . . 7
             |
72 | 71 | ord 392 |
. . . . . 6
     
       |
73 | 49, 72 | mpd 15 |
. . . . 5
       |
74 | 73, 51 | eqeltrrd 2702 |
. . . 4
   |
75 | 31, 74 | jca 554 |
. . 3
     |
76 | | cnfld1 19771 |
. . . 4
  ℂfld |
77 | 16, 76 | issubrg 18780 |
. . 3
 SubRing ℂfld
 ℂfld ℂfld ↾s        |
78 | 28, 75, 77 | sylanbrc 698 |
. 2
 SubRing ℂfld  |
79 | 25, 20, 78 | 3jca 1242 |
1
  ℂfld ↾s    SubRing ℂfld   |