MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphsubrglem Structured version   Visualization version   Unicode version

Theorem cphsubrglem 22977
Description: Lemma for cphsubrg 22980. (Contributed by Mario Carneiro, 9-Oct-2015.)
Hypotheses
Ref Expression
cphsubrglem.k  |-  K  =  ( Base `  F
)
cphsubrglem.1  |-  ( ph  ->  F  =  (flds  A ) )
cphsubrglem.2  |-  ( ph  ->  F  e.  DivRing )
Assertion
Ref Expression
cphsubrglem  |-  ( ph  ->  ( F  =  (flds  K )  /\  K  =  ( A  i^i  CC )  /\  K  e.  (SubRing ` fld ) ) )

Proof of Theorem cphsubrglem
StepHypRef Expression
1 cphsubrglem.1 . . 3  |-  ( ph  ->  F  =  (flds  A ) )
2 cphsubrglem.k . . . . . 6  |-  K  =  ( Base `  F
)
31fveq2d 6195 . . . . . . 7  |-  ( ph  ->  ( Base `  F
)  =  ( Base `  (flds  A ) ) )
4 cphsubrglem.2 . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  DivRing )
5 drngring 18754 . . . . . . . . . . . 12  |-  ( F  e.  DivRing  ->  F  e.  Ring )
64, 5syl 17 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  Ring )
71, 6eqeltrrd 2702 . . . . . . . . . 10  |-  ( ph  ->  (flds  A )  e.  Ring )
8 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  (flds  A ) )  =  (
Base `  (flds  A ) )
9 eqid 2622 . . . . . . . . . . 11  |-  ( 0g
`  (flds  A ) )  =  ( 0g `  (flds  A ) )
108, 9ring0cl 18569 . . . . . . . . . 10  |-  ( (flds  A )  e.  Ring  ->  ( 0g
`  (flds  A ) )  e.  (
Base `  (flds  A ) ) )
11 reldmress 15926 . . . . . . . . . . 11  |-  Rel  doms
12 eqid 2622 . . . . . . . . . . 11  |-  (flds  A )  =  (flds  A )
1311, 12, 8elbasov 15921 . . . . . . . . . 10  |-  ( ( 0g `  (flds  A ) )  e.  ( Base `  (flds  A )
)  ->  (fld  e.  _V  /\  A  e.  _V )
)
147, 10, 133syl 18 . . . . . . . . 9  |-  ( ph  ->  (fld  e.  _V  /\  A  e.  _V ) )
1514simprd 479 . . . . . . . 8  |-  ( ph  ->  A  e.  _V )
16 cnfldbas 19750 . . . . . . . . 9  |-  CC  =  ( Base ` fld )
1712, 16ressbas 15930 . . . . . . . 8  |-  ( A  e.  _V  ->  ( A  i^i  CC )  =  ( Base `  (flds  A )
) )
1815, 17syl 17 . . . . . . 7  |-  ( ph  ->  ( A  i^i  CC )  =  ( Base `  (flds  A ) ) )
193, 18eqtr4d 2659 . . . . . 6  |-  ( ph  ->  ( Base `  F
)  =  ( A  i^i  CC ) )
202, 19syl5eq 2668 . . . . 5  |-  ( ph  ->  K  =  ( A  i^i  CC ) )
2120oveq2d 6666 . . . 4  |-  ( ph  ->  (flds  K )  =  (flds  ( A  i^i  CC ) ) )
2216ressinbas 15936 . . . . 5  |-  ( A  e.  _V  ->  (flds  A )  =  (flds  ( A  i^i  CC ) ) )
2315, 22syl 17 . . . 4  |-  ( ph  ->  (flds  A )  =  (flds  ( A  i^i  CC ) ) )
2421, 23eqtr4d 2659 . . 3  |-  ( ph  ->  (flds  K )  =  (flds  A ) )
251, 24eqtr4d 2659 . 2  |-  ( ph  ->  F  =  (flds  K ) )
2625, 6eqeltrrd 2702 . . . 4  |-  ( ph  ->  (flds  K )  e.  Ring )
27 cnring 19768 . . . 4  |-fld  e.  Ring
2826, 27jctil 560 . . 3  |-  ( ph  ->  (fld  e.  Ring  /\  (flds  K )  e.  Ring ) )
2912, 16ressbasss 15932 . . . . . 6  |-  ( Base `  (flds  A ) )  C_  CC
303, 29syl6eqss 3655 . . . . 5  |-  ( ph  ->  ( Base `  F
)  C_  CC )
312, 30syl5eqss 3649 . . . 4  |-  ( ph  ->  K  C_  CC )
32 eqid 2622 . . . . . . . . . 10  |-  ( 0g
`  F )  =  ( 0g `  F
)
33 eqid 2622 . . . . . . . . . 10  |-  ( 1r
`  F )  =  ( 1r `  F
)
3432, 33drngunz 18762 . . . . . . . . 9  |-  ( F  e.  DivRing  ->  ( 1r `  F )  =/=  ( 0g `  F ) )
354, 34syl 17 . . . . . . . 8  |-  ( ph  ->  ( 1r `  F
)  =/=  ( 0g
`  F ) )
3625fveq2d 6195 . . . . . . . . 9  |-  ( ph  ->  ( 0g `  F
)  =  ( 0g
`  (flds  K ) ) )
37 ringgrp 18552 . . . . . . . . . . . 12  |-  (fld  e.  Ring  ->fld  e.  Grp )
3827, 37mp1i 13 . . . . . . . . . . 11  |-  ( ph  ->fld  e. 
Grp )
39 ringgrp 18552 . . . . . . . . . . . 12  |-  ( (flds  K )  e.  Ring  ->  (flds  K )  e.  Grp )
4026, 39syl 17 . . . . . . . . . . 11  |-  ( ph  ->  (flds  K )  e.  Grp )
4116issubg 17594 . . . . . . . . . . 11  |-  ( K  e.  (SubGrp ` fld )  <->  (fld  e.  Grp  /\  K  C_  CC  /\  (flds  K )  e.  Grp ) )
4238, 31, 40, 41syl3anbrc 1246 . . . . . . . . . 10  |-  ( ph  ->  K  e.  (SubGrp ` fld )
)
43 eqid 2622 . . . . . . . . . . 11  |-  (flds  K )  =  (flds  K )
44 cnfld0 19770 . . . . . . . . . . 11  |-  0  =  ( 0g ` fld )
4543, 44subg0 17600 . . . . . . . . . 10  |-  ( K  e.  (SubGrp ` fld )  ->  0  =  ( 0g `  (flds  K )
) )
4642, 45syl 17 . . . . . . . . 9  |-  ( ph  ->  0  =  ( 0g
`  (flds  K ) ) )
4736, 46eqtr4d 2659 . . . . . . . 8  |-  ( ph  ->  ( 0g `  F
)  =  0 )
4835, 47neeqtrd 2863 . . . . . . 7  |-  ( ph  ->  ( 1r `  F
)  =/=  0 )
4948neneqd 2799 . . . . . 6  |-  ( ph  ->  -.  ( 1r `  F )  =  0 )
502, 33ringidcl 18568 . . . . . . . . . . . 12  |-  ( F  e.  Ring  ->  ( 1r
`  F )  e.  K )
516, 50syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( 1r `  F
)  e.  K )
5231, 51sseldd 3604 . . . . . . . . . 10  |-  ( ph  ->  ( 1r `  F
)  e.  CC )
5352sqvald 13005 . . . . . . . . 9  |-  ( ph  ->  ( ( 1r `  F ) ^ 2 )  =  ( ( 1r `  F )  x.  ( 1r `  F ) ) )
5425fveq2d 6195 . . . . . . . . . 10  |-  ( ph  ->  ( 1r `  F
)  =  ( 1r
`  (flds  K ) ) )
5554oveq1d 6665 . . . . . . . . 9  |-  ( ph  ->  ( ( 1r `  F )  x.  ( 1r `  F ) )  =  ( ( 1r
`  (flds  K ) )  x.  ( 1r `  F ) ) )
5625fveq2d 6195 . . . . . . . . . . . 12  |-  ( ph  ->  ( Base `  F
)  =  ( Base `  (flds  K ) ) )
572, 56syl5eq 2668 . . . . . . . . . . 11  |-  ( ph  ->  K  =  ( Base `  (flds  K ) ) )
5851, 57eleqtrd 2703 . . . . . . . . . 10  |-  ( ph  ->  ( 1r `  F
)  e.  ( Base `  (flds  K ) ) )
59 eqid 2622 . . . . . . . . . . 11  |-  ( Base `  (flds  K ) )  =  (
Base `  (flds  K ) )
60 fvex 6201 . . . . . . . . . . . . 13  |-  ( Base `  F )  e.  _V
612, 60eqeltri 2697 . . . . . . . . . . . 12  |-  K  e. 
_V
62 cnfldmul 19752 . . . . . . . . . . . . 13  |-  x.  =  ( .r ` fld )
6343, 62ressmulr 16006 . . . . . . . . . . . 12  |-  ( K  e.  _V  ->  x.  =  ( .r `  (flds  K
) ) )
6461, 63ax-mp 5 . . . . . . . . . . 11  |-  x.  =  ( .r `  (flds  K ) )
65 eqid 2622 . . . . . . . . . . 11  |-  ( 1r
`  (flds  K ) )  =  ( 1r `  (flds  K ) )
6659, 64, 65ringlidm 18571 . . . . . . . . . 10  |-  ( ( (flds  K )  e.  Ring  /\  ( 1r `  F )  e.  ( Base `  (flds  K )
) )  ->  (
( 1r `  (flds  K )
)  x.  ( 1r
`  F ) )  =  ( 1r `  F ) )
6726, 58, 66syl2anc 693 . . . . . . . . 9  |-  ( ph  ->  ( ( 1r `  (flds  K
) )  x.  ( 1r `  F ) )  =  ( 1r `  F ) )
6853, 55, 673eqtrd 2660 . . . . . . . 8  |-  ( ph  ->  ( ( 1r `  F ) ^ 2 )  =  ( 1r
`  F ) )
69 sq01 12986 . . . . . . . . 9  |-  ( ( 1r `  F )  e.  CC  ->  (
( ( 1r `  F ) ^ 2 )  =  ( 1r
`  F )  <->  ( ( 1r `  F )  =  0  \/  ( 1r
`  F )  =  1 ) ) )
7052, 69syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( ( 1r
`  F ) ^
2 )  =  ( 1r `  F )  <-> 
( ( 1r `  F )  =  0  \/  ( 1r `  F )  =  1 ) ) )
7168, 70mpbid 222 . . . . . . 7  |-  ( ph  ->  ( ( 1r `  F )  =  0  \/  ( 1r `  F )  =  1 ) )
7271ord 392 . . . . . 6  |-  ( ph  ->  ( -.  ( 1r
`  F )  =  0  ->  ( 1r `  F )  =  1 ) )
7349, 72mpd 15 . . . . 5  |-  ( ph  ->  ( 1r `  F
)  =  1 )
7473, 51eqeltrrd 2702 . . . 4  |-  ( ph  ->  1  e.  K )
7531, 74jca 554 . . 3  |-  ( ph  ->  ( K  C_  CC  /\  1  e.  K ) )
76 cnfld1 19771 . . . 4  |-  1  =  ( 1r ` fld )
7716, 76issubrg 18780 . . 3  |-  ( K  e.  (SubRing ` fld )  <->  ( (fld  e.  Ring  /\  (flds  K )  e.  Ring )  /\  ( K  C_  CC  /\  1  e.  K ) ) )
7828, 75, 77sylanbrc 698 . 2  |-  ( ph  ->  K  e.  (SubRing ` fld ) )
7925, 20, 783jca 1242 1  |-  ( ph  ->  ( F  =  (flds  K )  /\  K  =  ( A  i^i  CC )  /\  K  e.  (SubRing ` fld ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ` cfv 5888  (class class class)co 6650   CCcc 9934   0cc0 9936   1c1 9937    x. cmul 9941   2c2 11070   ^cexp 12860   Basecbs 15857   ↾s cress 15858   .rcmulr 15942   0gc0g 16100   Grpcgrp 17422  SubGrpcsubg 17588   1rcur 18501   Ringcrg 18547   DivRingcdr 18747  SubRingcsubrg 18776  ℂfldccnfld 19746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-seq 12802  df-exp 12861  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-subg 17591  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-drng 18749  df-subrg 18778  df-cnfld 19747
This theorem is referenced by:  cphreccllem  22978  cphsubrg  22980  tchclm  23031  tchcph  23036
  Copyright terms: Public domain W3C validator