MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufileu Structured version   Visualization version   Unicode version

Theorem ufileu 21723
Description: If the ultrafilter containing a given filter is unique, the filter is an ultrafilter. (Contributed by Jeff Hankins, 3-Dec-2009.) (Revised by Mario Carneiro, 2-Oct-2015.)
Assertion
Ref Expression
ufileu  |-  ( F  e.  ( Fil `  X
)  ->  ( F  e.  ( UFil `  X
)  <->  E! f  e.  (
UFil `  X ) F  C_  f ) )
Distinct variable groups:    f, F    f, X

Proof of Theorem ufileu
Dummy variables  g  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ufilfil 21708 . . . . 5  |-  ( f  e.  ( UFil `  X
)  ->  f  e.  ( Fil `  X ) )
2 ufilmax 21711 . . . . . . . 8  |-  ( ( F  e.  ( UFil `  X )  /\  f  e.  ( Fil `  X
)  /\  F  C_  f
)  ->  F  =  f )
323expa 1265 . . . . . . 7  |-  ( ( ( F  e.  (
UFil `  X )  /\  f  e.  ( Fil `  X ) )  /\  F  C_  f
)  ->  F  =  f )
43eqcomd 2628 . . . . . 6  |-  ( ( ( F  e.  (
UFil `  X )  /\  f  e.  ( Fil `  X ) )  /\  F  C_  f
)  ->  f  =  F )
54ex 450 . . . . 5  |-  ( ( F  e.  ( UFil `  X )  /\  f  e.  ( Fil `  X
) )  ->  ( F  C_  f  ->  f  =  F ) )
61, 5sylan2 491 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  f  e.  ( UFil `  X
) )  ->  ( F  C_  f  ->  f  =  F ) )
76ralrimiva 2966 . . 3  |-  ( F  e.  ( UFil `  X
)  ->  A. f  e.  ( UFil `  X
) ( F  C_  f  ->  f  =  F ) )
8 ssid 3624 . . . 4  |-  F  C_  F
9 sseq2 3627 . . . . 5  |-  ( f  =  F  ->  ( F  C_  f  <->  F  C_  F
) )
109eqreu 3398 . . . 4  |-  ( ( F  e.  ( UFil `  X )  /\  F  C_  F  /\  A. f  e.  ( UFil `  X
) ( F  C_  f  ->  f  =  F ) )  ->  E! f  e.  ( UFil `  X ) F  C_  f )
118, 10mp3an2 1412 . . 3  |-  ( ( F  e.  ( UFil `  X )  /\  A. f  e.  ( UFil `  X ) ( F 
C_  f  ->  f  =  F ) )  ->  E! f  e.  ( UFil `  X ) F 
C_  f )
127, 11mpdan 702 . 2  |-  ( F  e.  ( UFil `  X
)  ->  E! f  e.  ( UFil `  X
) F  C_  f
)
13 reu6 3395 . . 3  |-  ( E! f  e.  ( UFil `  X ) F  C_  f 
<->  E. g  e.  (
UFil `  X ) A. f  e.  ( UFil `  X ) ( F  C_  f  <->  f  =  g ) )
14 ibibr 358 . . . . . . . . . . 11  |-  ( ( f  =  g  ->  F  C_  f )  <->  ( f  =  g  ->  ( F 
C_  f  <->  f  =  g ) ) )
1514pm5.74ri 261 . . . . . . . . . 10  |-  ( f  =  g  ->  ( F  C_  f  <->  ( F  C_  f  <->  f  =  g ) ) )
16 sseq2 3627 . . . . . . . . . 10  |-  ( f  =  g  ->  ( F  C_  f  <->  F  C_  g
) )
1715, 16bitr3d 270 . . . . . . . . 9  |-  ( f  =  g  ->  (
( F  C_  f  <->  f  =  g )  <->  F  C_  g
) )
1817rspcva 3307 . . . . . . . 8  |-  ( ( g  e.  ( UFil `  X )  /\  A. f  e.  ( UFil `  X ) ( F 
C_  f  <->  f  =  g ) )  ->  F  C_  g )
1918adantll 750 . . . . . . 7  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  ->  F  C_  g
)
20 ufilfil 21708 . . . . . . . . . . 11  |-  ( g  e.  ( UFil `  X
)  ->  g  e.  ( Fil `  X ) )
21 filelss 21656 . . . . . . . . . . . 12  |-  ( ( g  e.  ( Fil `  X )  /\  x  e.  g )  ->  x  C_  X )
2221ex 450 . . . . . . . . . . 11  |-  ( g  e.  ( Fil `  X
)  ->  ( x  e.  g  ->  x  C_  X ) )
2320, 22syl 17 . . . . . . . . . 10  |-  ( g  e.  ( UFil `  X
)  ->  ( x  e.  g  ->  x  C_  X ) )
2423ad2antlr 763 . . . . . . . . 9  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  ->  ( x  e.  g  ->  x  C_  X ) )
25 filsspw 21655 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( F  e.  ( Fil `  X
)  ->  F  C_  ~P X )
2625ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  ->  F  C_  ~P X )
27 difss 3737 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( X 
\  x )  C_  X
28 filtop 21659 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( F  e.  ( Fil `  X
)  ->  X  e.  F )
2928ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  ->  X  e.  F )
30 difexg 4808 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( X  e.  F  ->  ( X  \  x )  e. 
_V )
3129, 30syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( X  \  x
)  e.  _V )
32 elpwg 4166 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( X  \  x )  e.  _V  ->  (
( X  \  x
)  e.  ~P X  <->  ( X  \  x ) 
C_  X ) )
3331, 32syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( ( X  \  x )  e.  ~P X 
<->  ( X  \  x
)  C_  X )
)
3427, 33mpbiri 248 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( X  \  x
)  e.  ~P X
)
3534snssd 4340 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  ->  { ( X  \  x ) }  C_  ~P X )
3626, 35unssd 3789 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( F  u.  {
( X  \  x
) } )  C_  ~P X )
37 ssun1 3776 . . . . . . . . . . . . . . . . . . . . . 22  |-  F  C_  ( F  u.  { ( X  \  x ) } )
38 filn0 21666 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( F  e.  ( Fil `  X
)  ->  F  =/=  (/) )
3938ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  ->  F  =/=  (/) )
40 ssn0 3976 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F  C_  ( F  u.  { ( X  \  x ) } )  /\  F  =/=  (/) )  -> 
( F  u.  {
( X  \  x
) } )  =/=  (/) )
4137, 39, 40sylancr 695 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( F  u.  {
( X  \  x
) } )  =/=  (/) )
42 filelss 21656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( F  e.  ( Fil `  X )  /\  f  e.  F )  ->  f  C_  X )
4342ad2ant2rl 785 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  f  e.  F ) )  -> 
f  C_  X )
44 df-ss 3588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( f 
C_  X  <->  ( f  i^i  X )  =  f )
4543, 44sylib 208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  f  e.  F ) )  -> 
( f  i^i  X
)  =  f )
4645sseq1d 3632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  f  e.  F ) )  -> 
( ( f  i^i 
X )  C_  x  <->  f 
C_  x ) )
47 filss 21657 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( F  e.  ( Fil `  X )  /\  (
f  e.  F  /\  x  C_  X  /\  f  C_  x ) )  ->  x  e.  F )
48473exp2 1285 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( F  e.  ( Fil `  X
)  ->  ( f  e.  F  ->  ( x 
C_  X  ->  (
f  C_  x  ->  x  e.  F ) ) ) )
4948com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( F  e.  ( Fil `  X
)  ->  ( x  C_  X  ->  ( f  e.  F  ->  ( f 
C_  x  ->  x  e.  F ) ) ) )
5049impd 447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( F  e.  ( Fil `  X
)  ->  ( (
x  C_  X  /\  f  e.  F )  ->  ( f  C_  x  ->  x  e.  F ) ) )
5150adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( F  e.  ( Fil `  X )  /\  g  e.  ( UFil `  X
) )  ->  (
( x  C_  X  /\  f  e.  F
)  ->  ( f  C_  x  ->  x  e.  F ) ) )
5251imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  f  e.  F ) )  -> 
( f  C_  x  ->  x  e.  F ) )
5346, 52sylbid 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  f  e.  F ) )  -> 
( ( f  i^i 
X )  C_  x  ->  x  e.  F ) )
5453con3d 148 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  f  e.  F ) )  -> 
( -.  x  e.  F  ->  -.  (
f  i^i  X )  C_  x ) )
5554expr 643 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  x  C_  X
)  ->  ( f  e.  F  ->  ( -.  x  e.  F  ->  -.  ( f  i^i  X
)  C_  x )
) )
5655com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  x  C_  X
)  ->  ( -.  x  e.  F  ->  ( f  e.  F  ->  -.  ( f  i^i  X
)  C_  x )
) )
5756impr 649 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( f  e.  F  ->  -.  ( f  i^i 
X )  C_  x
) )
5857imp 445 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  /\  f  e.  F )  ->  -.  ( f  i^i 
X )  C_  x
)
59 ineq2 3808 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( g  =  ( X  \  x )  ->  (
f  i^i  g )  =  ( f  i^i  ( X  \  x
) ) )
6059neeq1d 2853 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( g  =  ( X  \  x )  ->  (
( f  i^i  g
)  =/=  (/)  <->  ( f  i^i  ( X  \  x
) )  =/=  (/) ) )
6160ralsng 4218 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( X  \  x )  e.  _V  ->  ( A. g  e.  { ( X  \  x ) }  ( f  i^i  g )  =/=  (/)  <->  ( f  i^i  ( X  \  x
) )  =/=  (/) ) )
62 inssdif0 3947 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( f  i^i  X ) 
C_  x  <->  ( f  i^i  ( X  \  x
) )  =  (/) )
6362necon3bbii 2841 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( -.  ( f  i^i  X
)  C_  x  <->  ( f  i^i  ( X  \  x
) )  =/=  (/) )
6461, 63syl6bbr 278 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( X  \  x )  e.  _V  ->  ( A. g  e.  { ( X  \  x ) }  ( f  i^i  g )  =/=  (/)  <->  -.  (
f  i^i  X )  C_  x ) )
6531, 64syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( A. g  e. 
{ ( X  \  x ) }  (
f  i^i  g )  =/=  (/)  <->  -.  ( f  i^i  X )  C_  x
) )
6665adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  /\  f  e.  F )  ->  ( A. g  e. 
{ ( X  \  x ) }  (
f  i^i  g )  =/=  (/)  <->  -.  ( f  i^i  X )  C_  x
) )
6758, 66mpbird 247 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  /\  f  e.  F )  ->  A. g  e.  {
( X  \  x
) }  ( f  i^i  g )  =/=  (/) )
6867ralrimiva 2966 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  ->  A. f  e.  F  A. g  e.  { ( X  \  x ) }  ( f  i^i  g )  =/=  (/) )
69 filfbas 21652 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( F  e.  ( Fil `  X
)  ->  F  e.  ( fBas `  X )
)
7069ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  ->  F  e.  ( fBas `  X ) )
71 difssd 3738 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( X  \  x
)  C_  X )
72 ssdif0 3942 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( X 
C_  x  <->  ( X  \  x )  =  (/) )
73 eqss 3618 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( x  =  X  <->  ( x  C_  X  /\  X  C_  x ) )
7473simplbi2 655 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( x 
C_  X  ->  ( X  C_  x  ->  x  =  X ) )
75 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( x  =  X  ->  (
x  e.  F  <->  X  e.  F ) )
7675notbid 308 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( x  =  X  ->  ( -.  x  e.  F  <->  -.  X  e.  F ) )
7776biimpcd 239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( -.  x  e.  F  -> 
( x  =  X  ->  -.  X  e.  F ) )
7874, 77sylan9 689 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( x  C_  X  /\  -.  x  e.  F
)  ->  ( X  C_  x  ->  -.  X  e.  F ) )
7978adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( X  C_  x  ->  -.  X  e.  F
) )
8072, 79syl5bir 233 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( ( X  \  x )  =  (/)  ->  -.  X  e.  F
) )
8180necon2ad 2809 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( X  e.  F  ->  ( X  \  x
)  =/=  (/) ) )
8229, 81mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( X  \  x
)  =/=  (/) )
83 snfbas 21670 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( X  \  x
)  C_  X  /\  ( X  \  x
)  =/=  (/)  /\  X  e.  F )  ->  { ( X  \  x ) }  e.  ( fBas `  X ) )
8471, 82, 29, 83syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  ->  { ( X  \  x ) }  e.  ( fBas `  X )
)
85 fbunfip 21673 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( F  e.  ( fBas `  X )  /\  {
( X  \  x
) }  e.  (
fBas `  X )
)  ->  ( -.  (/) 
e.  ( fi `  ( F  u.  { ( X  \  x ) } ) )  <->  A. f  e.  F  A. g  e.  { ( X  \  x ) }  (
f  i^i  g )  =/=  (/) ) )
8670, 84, 85syl2anc 693 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( -.  (/)  e.  ( fi `  ( F  u.  { ( X 
\  x ) } ) )  <->  A. f  e.  F  A. g  e.  { ( X  \  x ) }  (
f  i^i  g )  =/=  (/) ) )
8768, 86mpbird 247 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  ->  -.  (/)  e.  ( fi
`  ( F  u.  { ( X  \  x
) } ) ) )
88 fsubbas 21671 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( X  e.  F  ->  (
( fi `  ( F  u.  { ( X  \  x ) } ) )  e.  (
fBas `  X )  <->  ( ( F  u.  {
( X  \  x
) } )  C_  ~P X  /\  ( F  u.  { ( X  \  x ) } )  =/=  (/)  /\  -.  (/) 
e.  ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) ) )
8929, 88syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( ( fi `  ( F  u.  { ( X  \  x ) } ) )  e.  ( fBas `  X
)  <->  ( ( F  u.  { ( X 
\  x ) } )  C_  ~P X  /\  ( F  u.  {
( X  \  x
) } )  =/=  (/)  /\  -.  (/)  e.  ( fi `  ( F  u.  { ( X 
\  x ) } ) ) ) ) )
9036, 41, 87, 89mpbir3and 1245 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( fi `  ( F  u.  { ( X  \  x ) } ) )  e.  (
fBas `  X )
)
91 fgcl 21682 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( fi `  ( F  u.  { ( X 
\  x ) } ) )  e.  (
fBas `  X )  ->  ( X filGen ( fi
`  ( F  u.  { ( X  \  x
) } ) ) )  e.  ( Fil `  X ) )
9290, 91syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( X filGen ( fi
`  ( F  u.  { ( X  \  x
) } ) ) )  e.  ( Fil `  X ) )
93 filssufil 21716 . . . . . . . . . . . . . . . . . . 19  |-  ( ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) )  e.  ( Fil `  X
)  ->  E. f  e.  ( UFil `  X
) ( X filGen ( fi `  ( F  u.  { ( X 
\  x ) } ) ) )  C_  f )
9492, 93syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  ->  E. f  e.  ( UFil `  X ) ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) 
C_  f )
95 r19.29 3072 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A. f  e.  (
UFil `  X )
( F  C_  f  <->  f  =  g )  /\  E. f  e.  ( UFil `  X ) ( X
filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) )  C_  f )  ->  E. f  e.  ( UFil `  X
) ( ( F 
C_  f  <->  f  =  g )  /\  ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) 
C_  f ) )
96 biimp 205 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F  C_  f  <->  f  =  g )  ->  ( F  C_  f  ->  f  =  g ) )
97 simpll 790 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  ->  F  e.  ( Fil `  X ) )
98 snex 4908 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  { ( X  \  x ) }  e.  _V
99 unexg 6959 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( F  e.  ( Fil `  X )  /\  {
( X  \  x
) }  e.  _V )  ->  ( F  u.  { ( X  \  x
) } )  e. 
_V )
10097, 98, 99sylancl 694 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( F  u.  {
( X  \  x
) } )  e. 
_V )
101 ssfii 8325 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( F  u.  { ( X  \  x ) } )  e.  _V  ->  ( F  u.  {
( X  \  x
) } )  C_  ( fi `  ( F  u.  { ( X 
\  x ) } ) ) )
102100, 101syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( F  u.  {
( X  \  x
) } )  C_  ( fi `  ( F  u.  { ( X 
\  x ) } ) ) )
103 ssfg 21676 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( fi `  ( F  u.  { ( X 
\  x ) } ) )  e.  (
fBas `  X )  ->  ( fi `  ( F  u.  { ( X  \  x ) } ) )  C_  ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) )
10490, 103syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( fi `  ( F  u.  { ( X  \  x ) } ) )  C_  ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) )
105102, 104sstrd 3613 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( F  u.  {
( X  \  x
) } )  C_  ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) )
106105unssad 3790 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  ->  F  C_  ( X filGen ( fi `  ( F  u.  { ( X 
\  x ) } ) ) ) )
107 sstr2 3610 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( F 
C_  ( X filGen ( fi `  ( F  u.  { ( X 
\  x ) } ) ) )  -> 
( ( X filGen ( fi `  ( F  u.  { ( X 
\  x ) } ) ) )  C_  f  ->  F  C_  f
) )
108106, 107syl 17 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( ( X filGen ( fi `  ( F  u.  { ( X 
\  x ) } ) ) )  C_  f  ->  F  C_  f
) )
109108imim1d 82 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( ( F  C_  f  ->  f  =  g )  ->  ( ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) 
C_  f  ->  f  =  g ) ) )
110 sseq2 3627 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f  =  g  ->  (
( X filGen ( fi
`  ( F  u.  { ( X  \  x
) } ) ) )  C_  f  <->  ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) )  C_  g ) )
111110biimpcd 239 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) 
C_  f  ->  (
f  =  g  -> 
( X filGen ( fi
`  ( F  u.  { ( X  \  x
) } ) ) )  C_  g )
)
112111a2i 14 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( X filGen ( fi
`  ( F  u.  { ( X  \  x
) } ) ) )  C_  f  ->  f  =  g )  -> 
( ( X filGen ( fi `  ( F  u.  { ( X 
\  x ) } ) ) )  C_  f  ->  ( X filGen ( fi `  ( F  u.  { ( X 
\  x ) } ) ) )  C_  g ) )
11396, 109, 112syl56 36 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( ( F  C_  f 
<->  f  =  g )  ->  ( ( X
filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) )  C_  f  ->  ( X filGen ( fi `  ( F  u.  { ( X 
\  x ) } ) ) )  C_  g ) ) )
114113impd 447 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( ( ( F 
C_  f  <->  f  =  g )  /\  ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) 
C_  f )  -> 
( X filGen ( fi
`  ( F  u.  { ( X  \  x
) } ) ) )  C_  g )
)
115114rexlimdvw 3034 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( E. f  e.  ( UFil `  X
) ( ( F 
C_  f  <->  f  =  g )  /\  ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) 
C_  f )  -> 
( X filGen ( fi
`  ( F  u.  { ( X  \  x
) } ) ) )  C_  g )
)
11695, 115syl5 34 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( ( A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g )  /\  E. f  e.  ( UFil `  X
) ( X filGen ( fi `  ( F  u.  { ( X 
\  x ) } ) ) )  C_  f )  ->  ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) 
C_  g ) )
11794, 116mpan2d 710 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g )  ->  ( X filGen ( fi `  ( F  u.  { ( X 
\  x ) } ) ) )  C_  g ) )
118117imp 445 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  /\  A. f  e.  ( UFil `  X ) ( F 
C_  f  <->  f  =  g ) )  -> 
( X filGen ( fi
`  ( F  u.  { ( X  \  x
) } ) ) )  C_  g )
119118an32s 846 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  /\  ( x 
C_  X  /\  -.  x  e.  F )
)  ->  ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) )  C_  g )
120 snidg 4206 . . . . . . . . . . . . . . . . . . 19  |-  ( ( X  \  x )  e.  _V  ->  ( X  \  x )  e. 
{ ( X  \  x ) } )
12131, 120syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( X  \  x
)  e.  { ( X  \  x ) } )
122 elun2 3781 . . . . . . . . . . . . . . . . . 18  |-  ( ( X  \  x )  e.  { ( X 
\  x ) }  ->  ( X  \  x )  e.  ( F  u.  { ( X  \  x ) } ) )
123121, 122syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( X  \  x
)  e.  ( F  u.  { ( X 
\  x ) } ) )
124105, 123sseldd 3604 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  ( x  C_  X  /\  -.  x  e.  F ) )  -> 
( X  \  x
)  e.  ( X
filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) )
125124adantlr 751 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  /\  ( x 
C_  X  /\  -.  x  e.  F )
)  ->  ( X  \  x )  e.  ( X filGen ( fi `  ( F  u.  { ( X  \  x ) } ) ) ) )
126119, 125sseldd 3604 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  /\  ( x 
C_  X  /\  -.  x  e.  F )
)  ->  ( X  \  x )  e.  g )
127 simpllr 799 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  /\  ( x 
C_  X  /\  -.  x  e.  F )
)  ->  g  e.  ( UFil `  X )
)
128 simprl 794 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  /\  ( x 
C_  X  /\  -.  x  e.  F )
)  ->  x  C_  X
)
129 ufilb 21710 . . . . . . . . . . . . . . 15  |-  ( ( g  e.  ( UFil `  X )  /\  x  C_  X )  ->  ( -.  x  e.  g  <->  ( X  \  x )  e.  g ) )
130127, 128, 129syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  /\  ( x 
C_  X  /\  -.  x  e.  F )
)  ->  ( -.  x  e.  g  <->  ( X  \  x )  e.  g ) )
131126, 130mpbird 247 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  /\  ( x 
C_  X  /\  -.  x  e.  F )
)  ->  -.  x  e.  g )
132131expr 643 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  /\  x  C_  X )  ->  ( -.  x  e.  F  ->  -.  x  e.  g ) )
133132con4d 114 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( Fil `  X
)  /\  g  e.  ( UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  /\  x  C_  X )  ->  (
x  e.  g  ->  x  e.  F )
)
134133ex 450 . . . . . . . . . 10  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  ->  ( x  C_  X  ->  ( x  e.  g  ->  x  e.  F ) ) )
135134com23 86 . . . . . . . . 9  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  ->  ( x  e.  g  ->  ( x 
C_  X  ->  x  e.  F ) ) )
13624, 135mpdd 43 . . . . . . . 8  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  ->  ( x  e.  g  ->  x  e.  F ) )
137136ssrdv 3609 . . . . . . 7  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  ->  g  C_  F )
13819, 137eqssd 3620 . . . . . 6  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  ->  F  =  g )
139 simplr 792 . . . . . 6  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  ->  g  e.  ( UFil `  X )
)
140138, 139eqeltrd 2701 . . . . 5  |-  ( ( ( F  e.  ( Fil `  X )  /\  g  e.  (
UFil `  X )
)  /\  A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g ) )  ->  F  e.  ( UFil `  X )
)
141140ex 450 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  g  e.  ( UFil `  X
) )  ->  ( A. f  e.  ( UFil `  X ) ( F  C_  f  <->  f  =  g )  ->  F  e.  ( UFil `  X
) ) )
142141rexlimdva 3031 . . 3  |-  ( F  e.  ( Fil `  X
)  ->  ( E. g  e.  ( UFil `  X ) A. f  e.  ( UFil `  X
) ( F  C_  f 
<->  f  =  g )  ->  F  e.  (
UFil `  X )
) )
14313, 142syl5bi 232 . 2  |-  ( F  e.  ( Fil `  X
)  ->  ( E! f  e.  ( UFil `  X ) F  C_  f  ->  F  e.  (
UFil `  X )
) )
14412, 143impbid2 216 1  |-  ( F  e.  ( Fil `  X
)  ->  ( F  e.  ( UFil `  X
)  <->  E! f  e.  (
UFil `  X ) F  C_  f ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   E!wreu 2914   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   ` cfv 5888  (class class class)co 6650   ficfi 8316   fBascfbas 19734   filGencfg 19735   Filcfil 21649   UFilcufil 21703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rpss 6937  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-fin 7959  df-fi 8317  df-card 8765  df-ac 8939  df-cda 8990  df-fbas 19743  df-fg 19744  df-fil 21650  df-ufil 21705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator