Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotasv2d Structured version   Visualization version   Unicode version

Theorem riotasv2d 34243
Description: Value of description binder  D for a single-valued class expression  C ( y ) (as in e.g. reusv2 4874). Special case of riota2f 6632. (Contributed by NM, 2-Mar-2013.)
Hypotheses
Ref Expression
riotasv2d.1  |-  F/ y
ph
riotasv2d.2  |-  ( ph  -> 
F/_ y F )
riotasv2d.3  |-  ( ph  ->  F/ y ch )
riotasv2d.4  |-  ( ph  ->  D  =  ( iota_ x  e.  A  A. y  e.  B  ( ps  ->  x  =  C ) ) )
riotasv2d.5  |-  ( (
ph  /\  y  =  E )  ->  ( ps 
<->  ch ) )
riotasv2d.6  |-  ( (
ph  /\  y  =  E )  ->  C  =  F )
riotasv2d.7  |-  ( ph  ->  D  e.  A )
riotasv2d.8  |-  ( ph  ->  E  e.  B )
riotasv2d.9  |-  ( ph  ->  ch )
Assertion
Ref Expression
riotasv2d  |-  ( (
ph  /\  A  e.  V )  ->  D  =  F )
Distinct variable groups:    x, y, A    x, B, y    x, C    y, E    ps, x
Allowed substitution hints:    ph( x, y)    ps( y)    ch( x, y)    C( y)    D( x, y)    E( x)    F( x, y)    V( x, y)

Proof of Theorem riotasv2d
StepHypRef Expression
1 elex 3212 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 riotasv2d.8 . . . 4  |-  ( ph  ->  E  e.  B )
32adantr 481 . . 3  |-  ( (
ph  /\  A  e.  _V )  ->  E  e.  B )
4 riotasv2d.9 . . . 4  |-  ( ph  ->  ch )
54adantr 481 . . 3  |-  ( (
ph  /\  A  e.  _V )  ->  ch )
6 eleq1 2689 . . . . . . . 8  |-  ( y  =  E  ->  (
y  e.  B  <->  E  e.  B ) )
76adantl 482 . . . . . . 7  |-  ( (
ph  /\  y  =  E )  ->  (
y  e.  B  <->  E  e.  B ) )
8 riotasv2d.5 . . . . . . 7  |-  ( (
ph  /\  y  =  E )  ->  ( ps 
<->  ch ) )
97, 8anbi12d 747 . . . . . 6  |-  ( (
ph  /\  y  =  E )  ->  (
( y  e.  B  /\  ps )  <->  ( E  e.  B  /\  ch )
) )
10 riotasv2d.6 . . . . . . 7  |-  ( (
ph  /\  y  =  E )  ->  C  =  F )
1110eqeq2d 2632 . . . . . 6  |-  ( (
ph  /\  y  =  E )  ->  ( D  =  C  <->  D  =  F ) )
129, 11imbi12d 334 . . . . 5  |-  ( (
ph  /\  y  =  E )  ->  (
( ( y  e.  B  /\  ps )  ->  D  =  C )  <-> 
( ( E  e.  B  /\  ch )  ->  D  =  F ) ) )
1312adantlr 751 . . . 4  |-  ( ( ( ph  /\  A  e.  _V )  /\  y  =  E )  ->  (
( ( y  e.  B  /\  ps )  ->  D  =  C )  <-> 
( ( E  e.  B  /\  ch )  ->  D  =  F ) ) )
14 riotasv2d.4 . . . . 5  |-  ( ph  ->  D  =  ( iota_ x  e.  A  A. y  e.  B  ( ps  ->  x  =  C ) ) )
15 riotasv2d.7 . . . . 5  |-  ( ph  ->  D  e.  A )
1614, 15riotasvd 34242 . . . 4  |-  ( (
ph  /\  A  e.  _V )  ->  ( ( y  e.  B  /\  ps )  ->  D  =  C ) )
17 riotasv2d.1 . . . . 5  |-  F/ y
ph
18 nfv 1843 . . . . 5  |-  F/ y  A  e.  _V
1917, 18nfan 1828 . . . 4  |-  F/ y ( ph  /\  A  e.  _V )
20 nfcvd 2765 . . . 4  |-  ( (
ph  /\  A  e.  _V )  ->  F/_ y E )
21 nfvd 1844 . . . . . . 7  |-  ( ph  ->  F/ y  E  e.  B )
22 riotasv2d.3 . . . . . . 7  |-  ( ph  ->  F/ y ch )
2321, 22nfand 1826 . . . . . 6  |-  ( ph  ->  F/ y ( E  e.  B  /\  ch ) )
24 nfra1 2941 . . . . . . . . 9  |-  F/ y A. y  e.  B  ( ps  ->  x  =  C )
25 nfcv 2764 . . . . . . . . 9  |-  F/_ y A
2624, 25nfriota 6620 . . . . . . . 8  |-  F/_ y
( iota_ x  e.  A  A. y  e.  B  ( ps  ->  x  =  C ) )
2717, 14nfceqdf 2760 . . . . . . . 8  |-  ( ph  ->  ( F/_ y D  <->  F/_ y ( iota_ x  e.  A  A. y  e.  B  ( ps  ->  x  =  C ) ) ) )
2826, 27mpbiri 248 . . . . . . 7  |-  ( ph  -> 
F/_ y D )
29 riotasv2d.2 . . . . . . 7  |-  ( ph  -> 
F/_ y F )
3028, 29nfeqd 2772 . . . . . 6  |-  ( ph  ->  F/ y  D  =  F )
3123, 30nfimd 1823 . . . . 5  |-  ( ph  ->  F/ y ( ( E  e.  B  /\  ch )  ->  D  =  F ) )
3231adantr 481 . . . 4  |-  ( (
ph  /\  A  e.  _V )  ->  F/ y ( ( E  e.  B  /\  ch )  ->  D  =  F ) )
333, 13, 16, 19, 20, 32vtocldf 3256 . . 3  |-  ( (
ph  /\  A  e.  _V )  ->  ( ( E  e.  B  /\  ch )  ->  D  =  F ) )
343, 5, 33mp2and 715 . 2  |-  ( (
ph  /\  A  e.  _V )  ->  D  =  F )
351, 34sylan2 491 1  |-  ( (
ph  /\  A  e.  V )  ->  D  =  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   F/_wnfc 2751   A.wral 2912   _Vcvv 3200   iota_crio 6610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-riotaBAD 34239
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-undef 7399
This theorem is referenced by:  riotasv2s  34244  cdleme42b  35766
  Copyright terms: Public domain W3C validator