| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > riotasv2d | Structured version Visualization version Unicode version | ||
| Description: Value of description
binder |
| Ref | Expression |
|---|---|
| riotasv2d.1 |
|
| riotasv2d.2 |
|
| riotasv2d.3 |
|
| riotasv2d.4 |
|
| riotasv2d.5 |
|
| riotasv2d.6 |
|
| riotasv2d.7 |
|
| riotasv2d.8 |
|
| riotasv2d.9 |
|
| Ref | Expression |
|---|---|
| riotasv2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3212 |
. 2
| |
| 2 | riotasv2d.8 |
. . . 4
| |
| 3 | 2 | adantr 481 |
. . 3
|
| 4 | riotasv2d.9 |
. . . 4
| |
| 5 | 4 | adantr 481 |
. . 3
|
| 6 | eleq1 2689 |
. . . . . . . 8
| |
| 7 | 6 | adantl 482 |
. . . . . . 7
|
| 8 | riotasv2d.5 |
. . . . . . 7
| |
| 9 | 7, 8 | anbi12d 747 |
. . . . . 6
|
| 10 | riotasv2d.6 |
. . . . . . 7
| |
| 11 | 10 | eqeq2d 2632 |
. . . . . 6
|
| 12 | 9, 11 | imbi12d 334 |
. . . . 5
|
| 13 | 12 | adantlr 751 |
. . . 4
|
| 14 | riotasv2d.4 |
. . . . 5
| |
| 15 | riotasv2d.7 |
. . . . 5
| |
| 16 | 14, 15 | riotasvd 34242 |
. . . 4
|
| 17 | riotasv2d.1 |
. . . . 5
| |
| 18 | nfv 1843 |
. . . . 5
| |
| 19 | 17, 18 | nfan 1828 |
. . . 4
|
| 20 | nfcvd 2765 |
. . . 4
| |
| 21 | nfvd 1844 |
. . . . . . 7
| |
| 22 | riotasv2d.3 |
. . . . . . 7
| |
| 23 | 21, 22 | nfand 1826 |
. . . . . 6
|
| 24 | nfra1 2941 |
. . . . . . . . 9
| |
| 25 | nfcv 2764 |
. . . . . . . . 9
| |
| 26 | 24, 25 | nfriota 6620 |
. . . . . . . 8
|
| 27 | 17, 14 | nfceqdf 2760 |
. . . . . . . 8
|
| 28 | 26, 27 | mpbiri 248 |
. . . . . . 7
|
| 29 | riotasv2d.2 |
. . . . . . 7
| |
| 30 | 28, 29 | nfeqd 2772 |
. . . . . 6
|
| 31 | 23, 30 | nfimd 1823 |
. . . . 5
|
| 32 | 31 | adantr 481 |
. . . 4
|
| 33 | 3, 13, 16, 19, 20, 32 | vtocldf 3256 |
. . 3
|
| 34 | 3, 5, 33 | mp2and 715 |
. 2
|
| 35 | 1, 34 | sylan2 491 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-riotaBAD 34239 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-riota 6611 df-undef 7399 |
| This theorem is referenced by: riotasv2s 34244 cdleme42b 35766 |
| Copyright terms: Public domain | W3C validator |