MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s111 Structured version   Visualization version   Unicode version

Theorem s111 13395
Description: The singleton word function is injective. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
s111  |-  ( ( S  e.  A  /\  T  e.  A )  ->  ( <" S ">  =  <" T ">  <->  S  =  T
) )

Proof of Theorem s111
StepHypRef Expression
1 s1val 13378 . . 3  |-  ( S  e.  A  ->  <" S ">  =  { <. 0 ,  S >. } )
2 s1val 13378 . . 3  |-  ( T  e.  A  ->  <" T ">  =  { <. 0 ,  T >. } )
31, 2eqeqan12d 2638 . 2  |-  ( ( S  e.  A  /\  T  e.  A )  ->  ( <" S ">  =  <" T ">  <->  { <. 0 ,  S >. }  =  { <. 0 ,  T >. } ) )
4 opex 4932 . . 3  |-  <. 0 ,  S >.  e.  _V
5 sneqbg 4374 . . 3  |-  ( <.
0 ,  S >.  e. 
_V  ->  ( { <. 0 ,  S >. }  =  { <. 0 ,  T >. }  <->  <. 0 ,  S >.  =  <. 0 ,  T >. ) )
64, 5mp1i 13 . 2  |-  ( ( S  e.  A  /\  T  e.  A )  ->  ( { <. 0 ,  S >. }  =  { <. 0 ,  T >. }  <->  <. 0 ,  S >.  = 
<. 0 ,  T >. ) )
7 0z 11388 . . . 4  |-  0  e.  ZZ
8 eqid 2622 . . . . 5  |-  0  =  0
9 opthg 4946 . . . . . 6  |-  ( ( 0  e.  ZZ  /\  S  e.  A )  ->  ( <. 0 ,  S >.  =  <. 0 ,  T >.  <-> 
( 0  =  0  /\  S  =  T ) ) )
109baibd 948 . . . . 5  |-  ( ( ( 0  e.  ZZ  /\  S  e.  A )  /\  0  =  0 )  ->  ( <. 0 ,  S >.  = 
<. 0 ,  T >.  <-> 
S  =  T ) )
118, 10mpan2 707 . . . 4  |-  ( ( 0  e.  ZZ  /\  S  e.  A )  ->  ( <. 0 ,  S >.  =  <. 0 ,  T >.  <-> 
S  =  T ) )
127, 11mpan 706 . . 3  |-  ( S  e.  A  ->  ( <. 0 ,  S >.  = 
<. 0 ,  T >.  <-> 
S  =  T ) )
1312adantr 481 . 2  |-  ( ( S  e.  A  /\  T  e.  A )  ->  ( <. 0 ,  S >.  =  <. 0 ,  T >.  <-> 
S  =  T ) )
143, 6, 133bitrd 294 1  |-  ( ( S  e.  A  /\  T  e.  A )  ->  ( <" S ">  =  <" T ">  <->  S  =  T
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177   <.cop 4183   0cc0 9936   ZZcz 11377   <"cs1 13294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-neg 10269  df-z 11378  df-s1 13302
This theorem is referenced by:  2swrd1eqwrdeq  13454  s2eq2seq  13682  s3eq3seq  13684  2swrd2eqwrdeq  13696  efgredlemc  18158  mvhf1  31456  pfxsuff1eqwrdeq  41407
  Copyright terms: Public domain W3C validator