MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efgredlemc Structured version   Visualization version   Unicode version

Theorem efgredlemc 18158
Description: The reduced word that forms the base of the sequence in efgsval 18144 is uniquely determined, given the ending representation. (Contributed by Mario Carneiro, 1-Oct-2015.)
Hypotheses
Ref Expression
efgval.w  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
efgval.r  |-  .~  =  ( ~FG  `  I )
efgval2.m  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
efgval2.t  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
efgred.d  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
efgred.s  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
efgredlem.1  |-  ( ph  ->  A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( # `  ( S `  A )
)  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) )
efgredlem.2  |-  ( ph  ->  A  e.  dom  S
)
efgredlem.3  |-  ( ph  ->  B  e.  dom  S
)
efgredlem.4  |-  ( ph  ->  ( S `  A
)  =  ( S `
 B ) )
efgredlem.5  |-  ( ph  ->  -.  ( A ` 
0 )  =  ( B `  0 ) )
efgredlemb.k  |-  K  =  ( ( ( # `  A )  -  1 )  -  1 )
efgredlemb.l  |-  L  =  ( ( ( # `  B )  -  1 )  -  1 )
efgredlemb.p  |-  ( ph  ->  P  e.  ( 0 ... ( # `  ( A `  K )
) ) )
efgredlemb.q  |-  ( ph  ->  Q  e.  ( 0 ... ( # `  ( B `  L )
) ) )
efgredlemb.u  |-  ( ph  ->  U  e.  ( I  X.  2o ) )
efgredlemb.v  |-  ( ph  ->  V  e.  ( I  X.  2o ) )
efgredlemb.6  |-  ( ph  ->  ( S `  A
)  =  ( P ( T `  ( A `  K )
) U ) )
efgredlemb.7  |-  ( ph  ->  ( S `  B
)  =  ( Q ( T `  ( B `  L )
) V ) )
efgredlemb.8  |-  ( ph  ->  -.  ( A `  K )  =  ( B `  L ) )
Assertion
Ref Expression
efgredlemc  |-  ( ph  ->  ( P  e.  (
ZZ>= `  Q )  -> 
( A `  0
)  =  ( B `
 0 ) ) )
Distinct variable groups:    a, b, A    y, a, z, b    L, a, b    K, a, b    t, n, v, w, y, z, P   
m, a, n, t, v, w, x, M, b    U, n, v, w, y, z    k, a, T, b, m, t, x    n, V, v, w, y, z    Q, n, t, v, w, y, z    W, a, b    k, n, v, w, y, z, W, m, t, x    .~ , a, b, m, t, x, y, z    B, a, b    S, a, b   
I, a, b, m, n, t, v, w, x, y, z    D, a, b, m, t
Allowed substitution hints:    ph( x, y, z, w, v, t, k, m, n, a, b)    A( x, y, z, w, v, t, k, m, n)    B( x, y, z, w, v, t, k, m, n)    D( x, y, z, w, v, k, n)    P( x, k, m, a, b)    Q( x, k, m, a, b)    .~ ( w, v, k, n)    S( x, y, z, w, v, t, k, m, n)    T( y, z, w, v, n)    U( x, t, k, m, a, b)    I( k)    K( x, y, z, w, v, t, k, m, n)    L( x, y, z, w, v, t, k, m, n)    M( y, z, k)    V( x, t, k, m, a, b)

Proof of Theorem efgredlemc
Dummy variables  c 
i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzp1 11721 . 2  |-  ( P  e.  ( ZZ>= `  Q
)  ->  ( P  =  Q  \/  P  e.  ( ZZ>= `  ( Q  +  1 ) ) ) )
2 efgredlemb.8 . . . . . 6  |-  ( ph  ->  -.  ( A `  K )  =  ( B `  L ) )
3 efgval.w . . . . . . . . . . 11  |-  W  =  (  _I  ` Word  ( I  X.  2o ) )
4 fviss 6256 . . . . . . . . . . 11  |-  (  _I 
` Word  ( I  X.  2o ) )  C_ Word  ( I  X.  2o )
53, 4eqsstri 3635 . . . . . . . . . 10  |-  W  C_ Word  ( I  X.  2o )
6 efgredlem.2 . . . . . . . . . . . . 13  |-  ( ph  ->  A  e.  dom  S
)
7 efgval.r . . . . . . . . . . . . . . 15  |-  .~  =  ( ~FG  `  I )
8 efgval2.m . . . . . . . . . . . . . . 15  |-  M  =  ( y  e.  I ,  z  e.  2o  |->  <. y ,  ( 1o 
\  z ) >.
)
9 efgval2.t . . . . . . . . . . . . . . 15  |-  T  =  ( v  e.  W  |->  ( n  e.  ( 0 ... ( # `  v ) ) ,  w  e.  ( I  X.  2o )  |->  ( v splice  <. n ,  n ,  <" w ( M `  w ) "> >. )
) )
10 efgred.d . . . . . . . . . . . . . . 15  |-  D  =  ( W  \  U_ x  e.  W  ran  ( T `  x ) )
11 efgred.s . . . . . . . . . . . . . . 15  |-  S  =  ( m  e.  {
t  e.  (Word  W  \  { (/) } )  |  ( ( t ` 
0 )  e.  D  /\  A. k  e.  ( 1..^ ( # `  t
) ) ( t `
 k )  e. 
ran  ( T `  ( t `  (
k  -  1 ) ) ) ) } 
|->  ( m `  (
( # `  m )  -  1 ) ) )
123, 7, 8, 9, 10, 11efgsdm 18143 . . . . . . . . . . . . . 14  |-  ( A  e.  dom  S  <->  ( A  e.  (Word  W  \  { (/)
} )  /\  ( A `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  A ) ) ( A `  i )  e.  ran  ( T `
 ( A `  ( i  -  1 ) ) ) ) )
1312simp1bi 1076 . . . . . . . . . . . . 13  |-  ( A  e.  dom  S  ->  A  e.  (Word  W  \  { (/) } ) )
146, 13syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  (Word  W  \  { (/) } ) )
15 eldifi 3732 . . . . . . . . . . . 12  |-  ( A  e.  (Word  W  \  { (/) } )  ->  A  e. Word  W )
16 wrdf 13310 . . . . . . . . . . . 12  |-  ( A  e. Word  W  ->  A : ( 0..^ (
# `  A )
) --> W )
1714, 15, 163syl 18 . . . . . . . . . . 11  |-  ( ph  ->  A : ( 0..^ ( # `  A
) ) --> W )
18 fzossfz 12488 . . . . . . . . . . . . 13  |-  ( 0..^ ( ( # `  A
)  -  1 ) )  C_  ( 0 ... ( ( # `  A )  -  1 ) )
19 efgredlemb.k . . . . . . . . . . . . . 14  |-  K  =  ( ( ( # `  A )  -  1 )  -  1 )
20 efgredlem.1 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( # `  ( S `  A )
)  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) )
21 efgredlem.3 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  e.  dom  S
)
22 efgredlem.4 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( S `  A
)  =  ( S `
 B ) )
23 efgredlem.5 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  -.  ( A ` 
0 )  =  ( B `  0 ) )
243, 7, 8, 9, 10, 11, 20, 6, 21, 22, 23efgredlema 18153 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( # `  A )  -  1 )  e.  NN  /\  ( ( # `  B
)  -  1 )  e.  NN ) )
2524simpld 475 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( # `  A
)  -  1 )  e.  NN )
26 fzo0end 12560 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  A
)  -  1 )  e.  NN  ->  (
( ( # `  A
)  -  1 )  -  1 )  e.  ( 0..^ ( (
# `  A )  -  1 ) ) )
2725, 26syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( # `  A )  -  1 )  -  1 )  e.  ( 0..^ ( ( # `  A
)  -  1 ) ) )
2819, 27syl5eqel 2705 . . . . . . . . . . . . 13  |-  ( ph  ->  K  e.  ( 0..^ ( ( # `  A
)  -  1 ) ) )
2918, 28sseldi 3601 . . . . . . . . . . . 12  |-  ( ph  ->  K  e.  ( 0 ... ( ( # `  A )  -  1 ) ) )
30 lencl 13324 . . . . . . . . . . . . . . 15  |-  ( A  e. Word  W  ->  ( # `
 A )  e. 
NN0 )
3114, 15, 303syl 18 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( # `  A
)  e.  NN0 )
3231nn0zd 11480 . . . . . . . . . . . . 13  |-  ( ph  ->  ( # `  A
)  e.  ZZ )
33 fzoval 12471 . . . . . . . . . . . . 13  |-  ( (
# `  A )  e.  ZZ  ->  ( 0..^ ( # `  A
) )  =  ( 0 ... ( (
# `  A )  -  1 ) ) )
3432, 33syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0..^ ( # `  A ) )  =  ( 0 ... (
( # `  A )  -  1 ) ) )
3529, 34eleqtrrd 2704 . . . . . . . . . . 11  |-  ( ph  ->  K  e.  ( 0..^ ( # `  A
) ) )
3617, 35ffvelrnd 6360 . . . . . . . . . 10  |-  ( ph  ->  ( A `  K
)  e.  W )
375, 36sseldi 3601 . . . . . . . . 9  |-  ( ph  ->  ( A `  K
)  e. Word  ( I  X.  2o ) )
38 efgredlemb.p . . . . . . . . . 10  |-  ( ph  ->  P  e.  ( 0 ... ( # `  ( A `  K )
) ) )
39 elfzuz 12338 . . . . . . . . . 10  |-  ( P  e.  ( 0 ... ( # `  ( A `  K )
) )  ->  P  e.  ( ZZ>= `  0 )
)
40 eluzfz1 12348 . . . . . . . . . 10  |-  ( P  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... P
) )
4138, 39, 403syl 18 . . . . . . . . 9  |-  ( ph  ->  0  e.  ( 0 ... P ) )
42 lencl 13324 . . . . . . . . . . . 12  |-  ( ( A `  K )  e. Word  ( I  X.  2o )  ->  ( # `  ( A `  K
) )  e.  NN0 )
4337, 42syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  ( A `  K )
)  e.  NN0 )
44 nn0uz 11722 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
4543, 44syl6eleq 2711 . . . . . . . . . 10  |-  ( ph  ->  ( # `  ( A `  K )
)  e.  ( ZZ>= ` 
0 ) )
46 eluzfz2 12349 . . . . . . . . . 10  |-  ( (
# `  ( A `  K ) )  e.  ( ZZ>= `  0 )  ->  ( # `  ( A `  K )
)  e.  ( 0 ... ( # `  ( A `  K )
) ) )
4745, 46syl 17 . . . . . . . . 9  |-  ( ph  ->  ( # `  ( A `  K )
)  e.  ( 0 ... ( # `  ( A `  K )
) ) )
48 ccatswrd 13456 . . . . . . . . 9  |-  ( ( ( A `  K
)  e. Word  ( I  X.  2o )  /\  (
0  e.  ( 0 ... P )  /\  P  e.  ( 0 ... ( # `  ( A `  K )
) )  /\  ( # `
 ( A `  K ) )  e.  ( 0 ... ( # `
 ( A `  K ) ) ) ) )  ->  (
( ( A `  K ) substr  <. 0 ,  P >. ) ++  ( ( A `  K ) substr  <. P ,  ( # `  ( A `  K
) ) >. )
)  =  ( ( A `  K ) substr  <. 0 ,  ( # `  ( A `  K
) ) >. )
)
4937, 41, 38, 47, 48syl13anc 1328 . . . . . . . 8  |-  ( ph  ->  ( ( ( A `
 K ) substr  <. 0 ,  P >. ) ++  ( ( A `  K ) substr  <. P , 
( # `  ( A `
 K ) )
>. ) )  =  ( ( A `  K
) substr  <. 0 ,  (
# `  ( A `  K ) ) >.
) )
50 swrdid 13428 . . . . . . . . 9  |-  ( ( A `  K )  e. Word  ( I  X.  2o )  ->  ( ( A `  K ) substr  <. 0 ,  ( # `  ( A `  K
) ) >. )  =  ( A `  K ) )
5137, 50syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( A `  K ) substr  <. 0 ,  ( # `  ( A `  K )
) >. )  =  ( A `  K ) )
5249, 51eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( ( A `
 K ) substr  <. 0 ,  P >. ) ++  ( ( A `  K ) substr  <. P , 
( # `  ( A `
 K ) )
>. ) )  =  ( A `  K ) )
533, 7, 8, 9, 10, 11efgsdm 18143 . . . . . . . . . . . . . 14  |-  ( B  e.  dom  S  <->  ( B  e.  (Word  W  \  { (/)
} )  /\  ( B `  0 )  e.  D  /\  A. i  e.  ( 1..^ ( # `  B ) ) ( B `  i )  e.  ran  ( T `
 ( B `  ( i  -  1 ) ) ) ) )
5453simp1bi 1076 . . . . . . . . . . . . 13  |-  ( B  e.  dom  S  ->  B  e.  (Word  W  \  { (/) } ) )
5521, 54syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  (Word  W  \  { (/) } ) )
56 eldifi 3732 . . . . . . . . . . . 12  |-  ( B  e.  (Word  W  \  { (/) } )  ->  B  e. Word  W )
57 wrdf 13310 . . . . . . . . . . . 12  |-  ( B  e. Word  W  ->  B : ( 0..^ (
# `  B )
) --> W )
5855, 56, 573syl 18 . . . . . . . . . . 11  |-  ( ph  ->  B : ( 0..^ ( # `  B
) ) --> W )
59 fzossfz 12488 . . . . . . . . . . . . 13  |-  ( 0..^ ( ( # `  B
)  -  1 ) )  C_  ( 0 ... ( ( # `  B )  -  1 ) )
60 efgredlemb.l . . . . . . . . . . . . . 14  |-  L  =  ( ( ( # `  B )  -  1 )  -  1 )
6124simprd 479 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( # `  B
)  -  1 )  e.  NN )
62 fzo0end 12560 . . . . . . . . . . . . . . 15  |-  ( ( ( # `  B
)  -  1 )  e.  NN  ->  (
( ( # `  B
)  -  1 )  -  1 )  e.  ( 0..^ ( (
# `  B )  -  1 ) ) )
6361, 62syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( # `  B )  -  1 )  -  1 )  e.  ( 0..^ ( ( # `  B
)  -  1 ) ) )
6460, 63syl5eqel 2705 . . . . . . . . . . . . 13  |-  ( ph  ->  L  e.  ( 0..^ ( ( # `  B
)  -  1 ) ) )
6559, 64sseldi 3601 . . . . . . . . . . . 12  |-  ( ph  ->  L  e.  ( 0 ... ( ( # `  B )  -  1 ) ) )
66 lencl 13324 . . . . . . . . . . . . . . 15  |-  ( B  e. Word  W  ->  ( # `
 B )  e. 
NN0 )
6755, 56, 663syl 18 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( # `  B
)  e.  NN0 )
6867nn0zd 11480 . . . . . . . . . . . . 13  |-  ( ph  ->  ( # `  B
)  e.  ZZ )
69 fzoval 12471 . . . . . . . . . . . . 13  |-  ( (
# `  B )  e.  ZZ  ->  ( 0..^ ( # `  B
) )  =  ( 0 ... ( (
# `  B )  -  1 ) ) )
7068, 69syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( 0..^ ( # `  B ) )  =  ( 0 ... (
( # `  B )  -  1 ) ) )
7165, 70eleqtrrd 2704 . . . . . . . . . . 11  |-  ( ph  ->  L  e.  ( 0..^ ( # `  B
) ) )
7258, 71ffvelrnd 6360 . . . . . . . . . 10  |-  ( ph  ->  ( B `  L
)  e.  W )
735, 72sseldi 3601 . . . . . . . . 9  |-  ( ph  ->  ( B `  L
)  e. Word  ( I  X.  2o ) )
74 efgredlemb.q . . . . . . . . . 10  |-  ( ph  ->  Q  e.  ( 0 ... ( # `  ( B `  L )
) ) )
75 elfzuz 12338 . . . . . . . . . 10  |-  ( Q  e.  ( 0 ... ( # `  ( B `  L )
) )  ->  Q  e.  ( ZZ>= `  0 )
)
76 eluzfz1 12348 . . . . . . . . . 10  |-  ( Q  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... Q
) )
7774, 75, 763syl 18 . . . . . . . . 9  |-  ( ph  ->  0  e.  ( 0 ... Q ) )
78 lencl 13324 . . . . . . . . . . . 12  |-  ( ( B `  L )  e. Word  ( I  X.  2o )  ->  ( # `  ( B `  L
) )  e.  NN0 )
7973, 78syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  ( B `  L )
)  e.  NN0 )
8079, 44syl6eleq 2711 . . . . . . . . . 10  |-  ( ph  ->  ( # `  ( B `  L )
)  e.  ( ZZ>= ` 
0 ) )
81 eluzfz2 12349 . . . . . . . . . 10  |-  ( (
# `  ( B `  L ) )  e.  ( ZZ>= `  0 )  ->  ( # `  ( B `  L )
)  e.  ( 0 ... ( # `  ( B `  L )
) ) )
8280, 81syl 17 . . . . . . . . 9  |-  ( ph  ->  ( # `  ( B `  L )
)  e.  ( 0 ... ( # `  ( B `  L )
) ) )
83 ccatswrd 13456 . . . . . . . . 9  |-  ( ( ( B `  L
)  e. Word  ( I  X.  2o )  /\  (
0  e.  ( 0 ... Q )  /\  Q  e.  ( 0 ... ( # `  ( B `  L )
) )  /\  ( # `
 ( B `  L ) )  e.  ( 0 ... ( # `
 ( B `  L ) ) ) ) )  ->  (
( ( B `  L ) substr  <. 0 ,  Q >. ) ++  ( ( B `  L ) substr  <. Q ,  ( # `  ( B `  L
) ) >. )
)  =  ( ( B `  L ) substr  <. 0 ,  ( # `  ( B `  L
) ) >. )
)
8473, 77, 74, 82, 83syl13anc 1328 . . . . . . . 8  |-  ( ph  ->  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( B `  L ) substr  <. Q , 
( # `  ( B `
 L ) )
>. ) )  =  ( ( B `  L
) substr  <. 0 ,  (
# `  ( B `  L ) ) >.
) )
85 swrdid 13428 . . . . . . . . 9  |-  ( ( B `  L )  e. Word  ( I  X.  2o )  ->  ( ( B `  L ) substr  <. 0 ,  ( # `  ( B `  L
) ) >. )  =  ( B `  L ) )
8673, 85syl 17 . . . . . . . 8  |-  ( ph  ->  ( ( B `  L ) substr  <. 0 ,  ( # `  ( B `  L )
) >. )  =  ( B `  L ) )
8784, 86eqtrd 2656 . . . . . . 7  |-  ( ph  ->  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( B `  L ) substr  <. Q , 
( # `  ( B `
 L ) )
>. ) )  =  ( B `  L ) )
8852, 87eqeq12d 2637 . . . . . 6  |-  ( ph  ->  ( ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++  ( ( A `  K ) substr  <. P , 
( # `  ( A `
 K ) )
>. ) )  =  ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++  ( ( B `  L ) substr  <. Q ,  ( # `  ( B `  L
) ) >. )
)  <->  ( A `  K )  =  ( B `  L ) ) )
892, 88mtbird 315 . . . . 5  |-  ( ph  ->  -.  ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++  ( ( A `  K ) substr  <. P , 
( # `  ( A `
 K ) )
>. ) )  =  ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++  ( ( B `  L ) substr  <. Q ,  ( # `  ( B `  L
) ) >. )
) )
90 efgredlemb.6 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S `  A
)  =  ( P ( T `  ( A `  K )
) U ) )
91 efgredlemb.u . . . . . . . . . . . . . 14  |-  ( ph  ->  U  e.  ( I  X.  2o ) )
923, 7, 8, 9efgtval 18136 . . . . . . . . . . . . . 14  |-  ( ( ( A `  K
)  e.  W  /\  P  e.  ( 0 ... ( # `  ( A `  K )
) )  /\  U  e.  ( I  X.  2o ) )  ->  ( P ( T `  ( A `  K ) ) U )  =  ( ( A `  K ) splice  <. P ,  P ,  <" U
( M `  U
) "> >. )
)
9336, 38, 91, 92syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P ( T `
 ( A `  K ) ) U )  =  ( ( A `  K ) splice  <. P ,  P ,  <" U ( M `
 U ) "> >. ) )
948efgmf 18126 . . . . . . . . . . . . . . . . 17  |-  M :
( I  X.  2o )
--> ( I  X.  2o )
9594ffvelrni 6358 . . . . . . . . . . . . . . . 16  |-  ( U  e.  ( I  X.  2o )  ->  ( M `
 U )  e.  ( I  X.  2o ) )
9691, 95syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M `  U
)  e.  ( I  X.  2o ) )
9791, 96s2cld 13616 . . . . . . . . . . . . . 14  |-  ( ph  ->  <" U ( M `  U ) ">  e. Word  (
I  X.  2o ) )
98 splval 13502 . . . . . . . . . . . . . 14  |-  ( ( ( A `  K
)  e.  W  /\  ( P  e.  (
0 ... ( # `  ( A `  K )
) )  /\  P  e.  ( 0 ... ( # `
 ( A `  K ) ) )  /\  <" U ( M `  U ) ">  e. Word  (
I  X.  2o ) ) )  ->  (
( A `  K
) splice  <. P ,  P ,  <" U ( M `  U ) "> >. )  =  ( ( ( ( A `  K
) substr  <. 0 ,  P >. ) ++  <" U ( M `  U ) "> ) ++  ( ( A `  K
) substr  <. P ,  (
# `  ( A `  K ) ) >.
) ) )
9936, 38, 38, 97, 98syl13anc 1328 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A `  K ) splice  <. P ,  P ,  <" U
( M `  U
) "> >. )  =  ( ( ( ( A `  K
) substr  <. 0 ,  P >. ) ++  <" U ( M `  U ) "> ) ++  ( ( A `  K
) substr  <. P ,  (
# `  ( A `  K ) ) >.
) ) )
10090, 93, 993eqtrd 2660 . . . . . . . . . . . 12  |-  ( ph  ->  ( S `  A
)  =  ( ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++  <" U
( M `  U
) "> ) ++  ( ( A `  K ) substr  <. P , 
( # `  ( A `
 K ) )
>. ) ) )
101 efgredlemb.7 . . . . . . . . . . . . 13  |-  ( ph  ->  ( S `  B
)  =  ( Q ( T `  ( B `  L )
) V ) )
102 efgredlemb.v . . . . . . . . . . . . . 14  |-  ( ph  ->  V  e.  ( I  X.  2o ) )
1033, 7, 8, 9efgtval 18136 . . . . . . . . . . . . . 14  |-  ( ( ( B `  L
)  e.  W  /\  Q  e.  ( 0 ... ( # `  ( B `  L )
) )  /\  V  e.  ( I  X.  2o ) )  ->  ( Q ( T `  ( B `  L ) ) V )  =  ( ( B `  L ) splice  <. Q ,  Q ,  <" V
( M `  V
) "> >. )
)
10472, 74, 102, 103syl3anc 1326 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Q ( T `
 ( B `  L ) ) V )  =  ( ( B `  L ) splice  <. Q ,  Q ,  <" V ( M `
 V ) "> >. ) )
10594ffvelrni 6358 . . . . . . . . . . . . . . . 16  |-  ( V  e.  ( I  X.  2o )  ->  ( M `
 V )  e.  ( I  X.  2o ) )
106102, 105syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( M `  V
)  e.  ( I  X.  2o ) )
107102, 106s2cld 13616 . . . . . . . . . . . . . 14  |-  ( ph  ->  <" V ( M `  V ) ">  e. Word  (
I  X.  2o ) )
108 splval 13502 . . . . . . . . . . . . . 14  |-  ( ( ( B `  L
)  e.  W  /\  ( Q  e.  (
0 ... ( # `  ( B `  L )
) )  /\  Q  e.  ( 0 ... ( # `
 ( B `  L ) ) )  /\  <" V ( M `  V ) ">  e. Word  (
I  X.  2o ) ) )  ->  (
( B `  L
) splice  <. Q ,  Q ,  <" V ( M `  V ) "> >. )  =  ( ( ( ( B `  L
) substr  <. 0 ,  Q >. ) ++  <" V ( M `  V ) "> ) ++  ( ( B `  L
) substr  <. Q ,  (
# `  ( B `  L ) ) >.
) ) )
10972, 74, 74, 107, 108syl13anc 1328 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( B `  L ) splice  <. Q ,  Q ,  <" V
( M `  V
) "> >. )  =  ( ( ( ( B `  L
) substr  <. 0 ,  Q >. ) ++  <" V ( M `  V ) "> ) ++  ( ( B `  L
) substr  <. Q ,  (
# `  ( B `  L ) ) >.
) ) )
110101, 104, 1093eqtrd 2660 . . . . . . . . . . . 12  |-  ( ph  ->  ( S `  B
)  =  ( ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V
( M `  V
) "> ) ++  ( ( B `  L ) substr  <. Q , 
( # `  ( B `
 L ) )
>. ) ) )
11122, 100, 1103eqtr3d 2664 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++ 
<" U ( M `
 U ) "> ) ++  ( ( A `  K ) substr  <. P ,  ( # `  ( A `  K
) ) >. )
)  =  ( ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V
( M `  V
) "> ) ++  ( ( B `  L ) substr  <. Q , 
( # `  ( B `
 L ) )
>. ) ) )
112111adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  P  =  Q )  ->  (
( ( ( A `
 K ) substr  <. 0 ,  P >. ) ++ 
<" U ( M `
 U ) "> ) ++  ( ( A `  K ) substr  <. P ,  ( # `  ( A `  K
) ) >. )
)  =  ( ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V
( M `  V
) "> ) ++  ( ( B `  L ) substr  <. Q , 
( # `  ( B `
 L ) )
>. ) ) )
113 swrdcl 13419 . . . . . . . . . . . . . 14  |-  ( ( A `  K )  e. Word  ( I  X.  2o )  ->  ( ( A `  K ) substr  <. 0 ,  P >. )  e. Word  ( I  X.  2o ) )
11437, 113syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A `  K ) substr  <. 0 ,  P >. )  e. Word  (
I  X.  2o ) )
115114adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  P  =  Q )  ->  (
( A `  K
) substr  <. 0 ,  P >. )  e. Word  ( I  X.  2o ) )
11697adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  P  =  Q )  ->  <" U
( M `  U
) ">  e. Word  ( I  X.  2o ) )
117 ccatcl 13359 . . . . . . . . . . . 12  |-  ( ( ( ( A `  K ) substr  <. 0 ,  P >. )  e. Word  (
I  X.  2o )  /\  <" U ( M `  U ) ">  e. Word  (
I  X.  2o ) )  ->  ( (
( A `  K
) substr  <. 0 ,  P >. ) ++  <" U ( M `  U ) "> )  e. Word 
( I  X.  2o ) )
118115, 116, 117syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  P  =  Q )  ->  (
( ( A `  K ) substr  <. 0 ,  P >. ) ++  <" U
( M `  U
) "> )  e. Word  ( I  X.  2o ) )
119 swrdcl 13419 . . . . . . . . . . . . 13  |-  ( ( A `  K )  e. Word  ( I  X.  2o )  ->  ( ( A `  K ) substr  <. P ,  ( # `  ( A `  K
) ) >. )  e. Word  ( I  X.  2o ) )
12037, 119syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A `  K ) substr  <. P , 
( # `  ( A `
 K ) )
>. )  e. Word  ( I  X.  2o ) )
121120adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  P  =  Q )  ->  (
( A `  K
) substr  <. P ,  (
# `  ( A `  K ) ) >.
)  e. Word  ( I  X.  2o ) )
122 swrdcl 13419 . . . . . . . . . . . . . 14  |-  ( ( B `  L )  e. Word  ( I  X.  2o )  ->  ( ( B `  L ) substr  <. 0 ,  Q >. )  e. Word  ( I  X.  2o ) )
12373, 122syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( B `  L ) substr  <. 0 ,  Q >. )  e. Word  (
I  X.  2o ) )
124123adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  P  =  Q )  ->  (
( B `  L
) substr  <. 0 ,  Q >. )  e. Word  ( I  X.  2o ) )
125107adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  P  =  Q )  ->  <" V
( M `  V
) ">  e. Word  ( I  X.  2o ) )
126 ccatcl 13359 . . . . . . . . . . . 12  |-  ( ( ( ( B `  L ) substr  <. 0 ,  Q >. )  e. Word  (
I  X.  2o )  /\  <" V ( M `  V ) ">  e. Word  (
I  X.  2o ) )  ->  ( (
( B `  L
) substr  <. 0 ,  Q >. ) ++  <" V ( M `  V ) "> )  e. Word 
( I  X.  2o ) )
127124, 125, 126syl2anc 693 . . . . . . . . . . 11  |-  ( (
ph  /\  P  =  Q )  ->  (
( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V
( M `  V
) "> )  e. Word  ( I  X.  2o ) )
128 swrdcl 13419 . . . . . . . . . . . . 13  |-  ( ( B `  L )  e. Word  ( I  X.  2o )  ->  ( ( B `  L ) substr  <. Q ,  ( # `  ( B `  L
) ) >. )  e. Word  ( I  X.  2o ) )
12973, 128syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( B `  L ) substr  <. Q , 
( # `  ( B `
 L ) )
>. )  e. Word  ( I  X.  2o ) )
130129adantr 481 . . . . . . . . . . 11  |-  ( (
ph  /\  P  =  Q )  ->  (
( B `  L
) substr  <. Q ,  (
# `  ( B `  L ) ) >.
)  e. Word  ( I  X.  2o ) )
131 swrd0len 13422 . . . . . . . . . . . . . . . 16  |-  ( ( ( A `  K
)  e. Word  ( I  X.  2o )  /\  P  e.  ( 0 ... ( # `
 ( A `  K ) ) ) )  ->  ( # `  (
( A `  K
) substr  <. 0 ,  P >. ) )  =  P )
13237, 38, 131syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( # `  (
( A `  K
) substr  <. 0 ,  P >. ) )  =  P )
133 swrd0len 13422 . . . . . . . . . . . . . . . 16  |-  ( ( ( B `  L
)  e. Word  ( I  X.  2o )  /\  Q  e.  ( 0 ... ( # `
 ( B `  L ) ) ) )  ->  ( # `  (
( B `  L
) substr  <. 0 ,  Q >. ) )  =  Q )
13473, 74, 133syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( # `  (
( B `  L
) substr  <. 0 ,  Q >. ) )  =  Q )
135132, 134eqeq12d 2637 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( # `  (
( A `  K
) substr  <. 0 ,  P >. ) )  =  (
# `  ( ( B `  L ) substr  <.
0 ,  Q >. ) )  <->  P  =  Q
) )
136135biimpar 502 . . . . . . . . . . . . 13  |-  ( (
ph  /\  P  =  Q )  ->  ( # `
 ( ( A `
 K ) substr  <. 0 ,  P >. ) )  =  ( # `  ( ( B `  L ) substr  <. 0 ,  Q >. ) ) )
137 s2len 13634 . . . . . . . . . . . . . . 15  |-  ( # `  <" U ( M `  U ) "> )  =  2
138 s2len 13634 . . . . . . . . . . . . . . 15  |-  ( # `  <" V ( M `  V ) "> )  =  2
139137, 138eqtr4i 2647 . . . . . . . . . . . . . 14  |-  ( # `  <" U ( M `  U ) "> )  =  ( # `  <" V ( M `  V ) "> )
140139a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  P  =  Q )  ->  ( # `
 <" U ( M `  U ) "> )  =  ( # `  <" V ( M `  V ) "> ) )
141136, 140oveq12d 6668 . . . . . . . . . . . 12  |-  ( (
ph  /\  P  =  Q )  ->  (
( # `  ( ( A `  K ) substr  <. 0 ,  P >. ) )  +  ( # `  <" U ( M `  U ) "> ) )  =  ( ( # `  ( ( B `  L ) substr  <. 0 ,  Q >. ) )  +  ( # `  <" V ( M `  V ) "> ) ) )
142 ccatlen 13360 . . . . . . . . . . . . 13  |-  ( ( ( ( A `  K ) substr  <. 0 ,  P >. )  e. Word  (
I  X.  2o )  /\  <" U ( M `  U ) ">  e. Word  (
I  X.  2o ) )  ->  ( # `  (
( ( A `  K ) substr  <. 0 ,  P >. ) ++  <" U
( M `  U
) "> )
)  =  ( (
# `  ( ( A `  K ) substr  <.
0 ,  P >. ) )  +  ( # `  <" U ( M `  U ) "> ) ) )
143115, 116, 142syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  P  =  Q )  ->  ( # `
 ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++ 
<" U ( M `
 U ) "> ) )  =  ( ( # `  (
( A `  K
) substr  <. 0 ,  P >. ) )  +  (
# `  <" U
( M `  U
) "> )
) )
144 ccatlen 13360 . . . . . . . . . . . . 13  |-  ( ( ( ( B `  L ) substr  <. 0 ,  Q >. )  e. Word  (
I  X.  2o )  /\  <" V ( M `  V ) ">  e. Word  (
I  X.  2o ) )  ->  ( # `  (
( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V
( M `  V
) "> )
)  =  ( (
# `  ( ( B `  L ) substr  <.
0 ,  Q >. ) )  +  ( # `  <" V ( M `  V ) "> ) ) )
145124, 125, 144syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  P  =  Q )  ->  ( # `
 ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++ 
<" V ( M `
 V ) "> ) )  =  ( ( # `  (
( B `  L
) substr  <. 0 ,  Q >. ) )  +  (
# `  <" V
( M `  V
) "> )
) )
146141, 143, 1453eqtr4d 2666 . . . . . . . . . . 11  |-  ( (
ph  /\  P  =  Q )  ->  ( # `
 ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++ 
<" U ( M `
 U ) "> ) )  =  ( # `  (
( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V
( M `  V
) "> )
) )
147 ccatopth 13470 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++ 
<" U ( M `
 U ) "> )  e. Word  (
I  X.  2o )  /\  ( ( A `
 K ) substr  <. P ,  ( # `  ( A `  K )
) >. )  e. Word  (
I  X.  2o ) )  /\  ( ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V
( M `  V
) "> )  e. Word  ( I  X.  2o )  /\  ( ( B `
 L ) substr  <. Q ,  ( # `  ( B `  L )
) >. )  e. Word  (
I  X.  2o ) )  /\  ( # `  ( ( ( A `
 K ) substr  <. 0 ,  P >. ) ++ 
<" U ( M `
 U ) "> ) )  =  ( # `  (
( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V
( M `  V
) "> )
) )  ->  (
( ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++ 
<" U ( M `
 U ) "> ) ++  ( ( A `  K ) substr  <. P ,  ( # `  ( A `  K
) ) >. )
)  =  ( ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V
( M `  V
) "> ) ++  ( ( B `  L ) substr  <. Q , 
( # `  ( B `
 L ) )
>. ) )  <->  ( (
( ( A `  K ) substr  <. 0 ,  P >. ) ++  <" U
( M `  U
) "> )  =  ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++ 
<" V ( M `
 V ) "> )  /\  (
( A `  K
) substr  <. P ,  (
# `  ( A `  K ) ) >.
)  =  ( ( B `  L ) substr  <. Q ,  ( # `  ( B `  L
) ) >. )
) ) )
148118, 121, 127, 130, 146, 147syl221anc 1337 . . . . . . . . . 10  |-  ( (
ph  /\  P  =  Q )  ->  (
( ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++ 
<" U ( M `
 U ) "> ) ++  ( ( A `  K ) substr  <. P ,  ( # `  ( A `  K
) ) >. )
)  =  ( ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V
( M `  V
) "> ) ++  ( ( B `  L ) substr  <. Q , 
( # `  ( B `
 L ) )
>. ) )  <->  ( (
( ( A `  K ) substr  <. 0 ,  P >. ) ++  <" U
( M `  U
) "> )  =  ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++ 
<" V ( M `
 V ) "> )  /\  (
( A `  K
) substr  <. P ,  (
# `  ( A `  K ) ) >.
)  =  ( ( B `  L ) substr  <. Q ,  ( # `  ( B `  L
) ) >. )
) ) )
149112, 148mpbid 222 . . . . . . . . 9  |-  ( (
ph  /\  P  =  Q )  ->  (
( ( ( A `
 K ) substr  <. 0 ,  P >. ) ++ 
<" U ( M `
 U ) "> )  =  ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V
( M `  V
) "> )  /\  ( ( A `  K ) substr  <. P , 
( # `  ( A `
 K ) )
>. )  =  (
( B `  L
) substr  <. Q ,  (
# `  ( B `  L ) ) >.
) ) )
150149simpld 475 . . . . . . . 8  |-  ( (
ph  /\  P  =  Q )  ->  (
( ( A `  K ) substr  <. 0 ,  P >. ) ++  <" U
( M `  U
) "> )  =  ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++ 
<" V ( M `
 V ) "> ) )
151 ccatopth 13470 . . . . . . . . 9  |-  ( ( ( ( ( A `
 K ) substr  <. 0 ,  P >. )  e. Word  ( I  X.  2o )  /\  <" U
( M `  U
) ">  e. Word  ( I  X.  2o ) )  /\  ( ( ( B `  L
) substr  <. 0 ,  Q >. )  e. Word  ( I  X.  2o )  /\  <" V ( M `
 V ) ">  e. Word  ( I  X.  2o ) )  /\  ( # `  ( ( A `  K ) substr  <. 0 ,  P >. ) )  =  ( # `  ( ( B `  L ) substr  <. 0 ,  Q >. ) ) )  ->  ( ( ( ( A `  K
) substr  <. 0 ,  P >. ) ++  <" U ( M `  U ) "> )  =  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++ 
<" V ( M `
 V ) "> )  <->  ( (
( A `  K
) substr  <. 0 ,  P >. )  =  ( ( B `  L ) substr  <. 0 ,  Q >. )  /\  <" U ( M `  U ) ">  =  <" V ( M `  V ) "> ) ) )
152115, 116, 124, 125, 136, 151syl221anc 1337 . . . . . . . 8  |-  ( (
ph  /\  P  =  Q )  ->  (
( ( ( A `
 K ) substr  <. 0 ,  P >. ) ++ 
<" U ( M `
 U ) "> )  =  ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V
( M `  V
) "> )  <->  ( ( ( A `  K ) substr  <. 0 ,  P >. )  =  ( ( B `  L
) substr  <. 0 ,  Q >. )  /\  <" U
( M `  U
) ">  =  <" V ( M `
 V ) "> ) ) )
153150, 152mpbid 222 . . . . . . 7  |-  ( (
ph  /\  P  =  Q )  ->  (
( ( A `  K ) substr  <. 0 ,  P >. )  =  ( ( B `  L
) substr  <. 0 ,  Q >. )  /\  <" U
( M `  U
) ">  =  <" V ( M `
 V ) "> ) )
154153simpld 475 . . . . . 6  |-  ( (
ph  /\  P  =  Q )  ->  (
( A `  K
) substr  <. 0 ,  P >. )  =  ( ( B `  L ) substr  <. 0 ,  Q >. ) )
155149simprd 479 . . . . . 6  |-  ( (
ph  /\  P  =  Q )  ->  (
( A `  K
) substr  <. P ,  (
# `  ( A `  K ) ) >.
)  =  ( ( B `  L ) substr  <. Q ,  ( # `  ( B `  L
) ) >. )
)
156154, 155oveq12d 6668 . . . . 5  |-  ( (
ph  /\  P  =  Q )  ->  (
( ( A `  K ) substr  <. 0 ,  P >. ) ++  ( ( A `  K ) substr  <. P ,  ( # `  ( A `  K
) ) >. )
)  =  ( ( ( B `  L
) substr  <. 0 ,  Q >. ) ++  ( ( B `
 L ) substr  <. Q ,  ( # `  ( B `  L )
) >. ) ) )
15789, 156mtand 691 . . . 4  |-  ( ph  ->  -.  P  =  Q )
158157pm2.21d 118 . . 3  |-  ( ph  ->  ( P  =  Q  ->  ( A ` 
0 )  =  ( B `  0 ) ) )
159 uzp1 11721 . . . 4  |-  ( P  e.  ( ZZ>= `  ( Q  +  1 ) )  ->  ( P  =  ( Q  + 
1 )  \/  P  e.  ( ZZ>= `  ( ( Q  +  1 )  +  1 ) ) ) )
16091s1cld 13383 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  <" U ">  e. Word  ( I  X.  2o ) )
161 ccatcl 13359 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A `  K ) substr  <. 0 ,  P >. )  e. Word  (
I  X.  2o )  /\  <" U ">  e. Word  ( I  X.  2o ) )  ->  (
( ( A `  K ) substr  <. 0 ,  P >. ) ++  <" U "> )  e. Word  (
I  X.  2o ) )
162114, 160, 161syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( A `
 K ) substr  <. 0 ,  P >. ) ++ 
<" U "> )  e. Word  ( I  X.  2o ) )
16396s1cld 13383 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  <" ( M `
 U ) ">  e. Word  ( I  X.  2o ) )
164 ccatass 13371 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( A `
 K ) substr  <. 0 ,  P >. ) ++ 
<" U "> )  e. Word  ( I  X.  2o )  /\  <" ( M `  U
) ">  e. Word  ( I  X.  2o )  /\  ( ( A `
 K ) substr  <. P ,  ( # `  ( A `  K )
) >. )  e. Word  (
I  X.  2o ) )  ->  ( (
( ( ( A `
 K ) substr  <. 0 ,  P >. ) ++ 
<" U "> ) ++  <" ( M `
 U ) "> ) ++  ( ( A `  K ) substr  <. P ,  ( # `  ( A `  K
) ) >. )
)  =  ( ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++  <" U "> ) ++  ( <" ( M `  U ) "> ++  ( ( A `  K
) substr  <. P ,  (
# `  ( A `  K ) ) >.
) ) ) )
165162, 163, 120, 164syl3anc 1326 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( ( ( A `  K
) substr  <. 0 ,  P >. ) ++  <" U "> ) ++  <" ( M `  U ) "> ) ++  ( ( A `  K ) substr  <. P ,  ( # `  ( A `  K
) ) >. )
)  =  ( ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++  <" U "> ) ++  ( <" ( M `  U ) "> ++  ( ( A `  K
) substr  <. P ,  (
# `  ( A `  K ) ) >.
) ) ) )
166 ccatass 13371 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A `  K ) substr  <. 0 ,  P >. )  e. Word  (
I  X.  2o )  /\  <" U ">  e. Word  ( I  X.  2o )  /\  <" ( M `  U ) ">  e. Word  ( I  X.  2o ) )  -> 
( ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++ 
<" U "> ) ++  <" ( M `
 U ) "> )  =  ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++  ( <" U "> ++  <" ( M `  U ) "> ) ) )
167114, 160, 163, 166syl3anc 1326 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++ 
<" U "> ) ++  <" ( M `
 U ) "> )  =  ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++  ( <" U "> ++  <" ( M `  U ) "> ) ) )
168 df-s2 13593 . . . . . . . . . . . . . . . . . . 19  |-  <" U
( M `  U
) ">  =  ( <" U "> ++  <" ( M `
 U ) "> )
169168oveq2i 6661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A `  K
) substr  <. 0 ,  P >. ) ++  <" U ( M `  U ) "> )  =  ( ( ( A `
 K ) substr  <. 0 ,  P >. ) ++  ( <" U "> ++  <" ( M `
 U ) "> ) )
170167, 169syl6eqr 2674 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++ 
<" U "> ) ++  <" ( M `
 U ) "> )  =  ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++  <" U
( M `  U
) "> )
)
171170oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( ( ( A `  K
) substr  <. 0 ,  P >. ) ++  <" U "> ) ++  <" ( M `  U ) "> ) ++  ( ( A `  K ) substr  <. P ,  ( # `  ( A `  K
) ) >. )
)  =  ( ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++  <" U
( M `  U
) "> ) ++  ( ( A `  K ) substr  <. P , 
( # `  ( A `
 K ) )
>. ) ) )
172102s1cld 13383 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  <" V ">  e. Word  ( I  X.  2o ) )
173106s1cld 13383 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  <" ( M `
 V ) ">  e. Word  ( I  X.  2o ) )
174 ccatass 13371 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( B `  L ) substr  <. 0 ,  Q >. )  e. Word  (
I  X.  2o )  /\  <" V ">  e. Word  ( I  X.  2o )  /\  <" ( M `  V ) ">  e. Word  ( I  X.  2o ) )  -> 
( ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++ 
<" V "> ) ++  <" ( M `
 V ) "> )  =  ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++  ( <" V "> ++  <" ( M `  V ) "> ) ) )
175123, 172, 173, 174syl3anc 1326 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++ 
<" V "> ) ++  <" ( M `
 V ) "> )  =  ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++  ( <" V "> ++  <" ( M `  V ) "> ) ) )
176 df-s2 13593 . . . . . . . . . . . . . . . . . . 19  |-  <" V
( M `  V
) ">  =  ( <" V "> ++  <" ( M `
 V ) "> )
177176oveq2i 6661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( B `  L
) substr  <. 0 ,  Q >. ) ++  <" V ( M `  V ) "> )  =  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( <" V "> ++  <" ( M `
 V ) "> ) )
178175, 177syl6eqr 2674 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++ 
<" V "> ) ++  <" ( M `
 V ) "> )  =  ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V
( M `  V
) "> )
)
179178oveq1d 6665 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( ( ( B `  L
) substr  <. 0 ,  Q >. ) ++  <" V "> ) ++  <" ( M `  V ) "> ) ++  ( ( B `  L ) substr  <. Q ,  ( # `  ( B `  L
) ) >. )
)  =  ( ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V
( M `  V
) "> ) ++  ( ( B `  L ) substr  <. Q , 
( # `  ( B `
 L ) )
>. ) ) )
180111, 171, 1793eqtr4d 2666 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( ( ( A `  K
) substr  <. 0 ,  P >. ) ++  <" U "> ) ++  <" ( M `  U ) "> ) ++  ( ( A `  K ) substr  <. P ,  ( # `  ( A `  K
) ) >. )
)  =  ( ( ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++ 
<" V "> ) ++  <" ( M `
 V ) "> ) ++  ( ( B `  L ) substr  <. Q ,  ( # `  ( B `  L
) ) >. )
) )
181165, 180eqtr3d 2658 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++ 
<" U "> ) ++  ( <" ( M `  U ) "> ++  ( ( A `
 K ) substr  <. P ,  ( # `  ( A `  K )
) >. ) ) )  =  ( ( ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V "> ) ++  <" ( M `  V ) "> ) ++  ( ( B `  L ) substr  <. Q ,  ( # `  ( B `  L
) ) >. )
) )
182181adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  (
( ( ( A `
 K ) substr  <. 0 ,  P >. ) ++ 
<" U "> ) ++  ( <" ( M `  U ) "> ++  ( ( A `
 K ) substr  <. P ,  ( # `  ( A `  K )
) >. ) ) )  =  ( ( ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V "> ) ++  <" ( M `  V ) "> ) ++  ( ( B `  L ) substr  <. Q ,  ( # `  ( B `  L
) ) >. )
) )
183162adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  (
( ( A `  K ) substr  <. 0 ,  P >. ) ++  <" U "> )  e. Word  (
I  X.  2o ) )
184163adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  <" ( M `  U ) ">  e. Word  ( I  X.  2o ) )
185120adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  (
( A `  K
) substr  <. P ,  (
# `  ( A `  K ) ) >.
)  e. Word  ( I  X.  2o ) )
186 ccatcl 13359 . . . . . . . . . . . . . . 15  |-  ( (
<" ( M `  U ) ">  e. Word  ( I  X.  2o )  /\  ( ( A `
 K ) substr  <. P ,  ( # `  ( A `  K )
) >. )  e. Word  (
I  X.  2o ) )  ->  ( <" ( M `  U
) "> ++  ( ( A `  K ) substr  <. P ,  ( # `  ( A `  K
) ) >. )
)  e. Word  ( I  X.  2o ) )
187184, 185, 186syl2anc 693 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  ( <" ( M `  U ) "> ++  ( ( A `  K
) substr  <. P ,  (
# `  ( A `  K ) ) >.
) )  e. Word  (
I  X.  2o ) )
188 ccatcl 13359 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( B `  L ) substr  <. 0 ,  Q >. )  e. Word  (
I  X.  2o )  /\  <" V ">  e. Word  ( I  X.  2o ) )  ->  (
( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V "> )  e. Word  (
I  X.  2o ) )
189123, 172, 188syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++ 
<" V "> )  e. Word  ( I  X.  2o ) )
190189adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  (
( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V "> )  e. Word  (
I  X.  2o ) )
191173adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  <" ( M `  V ) ">  e. Word  ( I  X.  2o ) )
192 ccatcl 13359 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++ 
<" V "> )  e. Word  ( I  X.  2o )  /\  <" ( M `  V
) ">  e. Word  ( I  X.  2o ) )  ->  ( (
( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V "> ) ++  <" ( M `  V ) "> )  e. Word  (
I  X.  2o ) )
193190, 191, 192syl2anc 693 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  (
( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++ 
<" V "> ) ++  <" ( M `
 V ) "> )  e. Word  (
I  X.  2o ) )
194129adantr 481 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  (
( B `  L
) substr  <. Q ,  (
# `  ( B `  L ) ) >.
)  e. Word  ( I  X.  2o ) )
195 ccatlen 13360 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( B `  L ) substr  <. 0 ,  Q >. )  e. Word  (
I  X.  2o )  /\  <" V ">  e. Word  ( I  X.  2o ) )  ->  ( # `
 ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++ 
<" V "> ) )  =  ( ( # `  (
( B `  L
) substr  <. 0 ,  Q >. ) )  +  (
# `  <" V "> ) ) )
196123, 172, 195syl2anc 693 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( # `  (
( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V "> ) )  =  ( ( # `  (
( B `  L
) substr  <. 0 ,  Q >. ) )  +  (
# `  <" V "> ) ) )
197 s1len 13385 . . . . . . . . . . . . . . . . . . . . 21  |-  ( # `  <" V "> )  =  1
198197a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( # `  <" V "> )  =  1 )
199134, 198oveq12d 6668 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( # `  (
( B `  L
) substr  <. 0 ,  Q >. ) )  +  (
# `  <" V "> ) )  =  ( Q  +  1 ) )
200196, 199eqtrd 2656 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( # `  (
( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V "> ) )  =  ( Q  +  1 ) )
201132, 200eqeq12d 2637 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( # `  (
( A `  K
) substr  <. 0 ,  P >. ) )  =  (
# `  ( (
( B `  L
) substr  <. 0 ,  Q >. ) ++  <" V "> ) )  <->  P  =  ( Q  +  1
) ) )
202201biimpar 502 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  ( # `
 ( ( A `
 K ) substr  <. 0 ,  P >. ) )  =  ( # `  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++ 
<" V "> ) ) )
203 s1len 13385 . . . . . . . . . . . . . . . . . 18  |-  ( # `  <" U "> )  =  1
204 s1len 13385 . . . . . . . . . . . . . . . . . 18  |-  ( # `  <" ( M `
 V ) "> )  =  1
205203, 204eqtr4i 2647 . . . . . . . . . . . . . . . . 17  |-  ( # `  <" U "> )  =  ( # `
 <" ( M `
 V ) "> )
206205a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  ( # `
 <" U "> )  =  ( # `
 <" ( M `
 V ) "> ) )
207202, 206oveq12d 6668 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  (
( # `  ( ( A `  K ) substr  <. 0 ,  P >. ) )  +  ( # `  <" U "> ) )  =  ( ( # `  (
( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V "> ) )  +  ( # `  <" ( M `  V
) "> )
) )
208114adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  (
( A `  K
) substr  <. 0 ,  P >. )  e. Word  ( I  X.  2o ) )
209160adantr 481 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  <" U ">  e. Word  ( I  X.  2o ) )
210 ccatlen 13360 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A `  K ) substr  <. 0 ,  P >. )  e. Word  (
I  X.  2o )  /\  <" U ">  e. Word  ( I  X.  2o ) )  ->  ( # `
 ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++ 
<" U "> ) )  =  ( ( # `  (
( A `  K
) substr  <. 0 ,  P >. ) )  +  (
# `  <" U "> ) ) )
211208, 209, 210syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  ( # `
 ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++ 
<" U "> ) )  =  ( ( # `  (
( A `  K
) substr  <. 0 ,  P >. ) )  +  (
# `  <" U "> ) ) )
212 ccatlen 13360 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++ 
<" V "> )  e. Word  ( I  X.  2o )  /\  <" ( M `  V
) ">  e. Word  ( I  X.  2o ) )  ->  ( # `  (
( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++ 
<" V "> ) ++  <" ( M `
 V ) "> ) )  =  ( ( # `  (
( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V "> ) )  +  ( # `  <" ( M `  V
) "> )
) )
213190, 191, 212syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  ( # `
 ( ( ( ( B `  L
) substr  <. 0 ,  Q >. ) ++  <" V "> ) ++  <" ( M `  V ) "> ) )  =  ( ( # `  (
( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V "> ) )  +  ( # `  <" ( M `  V
) "> )
) )
214207, 211, 2133eqtr4d 2666 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  ( # `
 ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++ 
<" U "> ) )  =  (
# `  ( (
( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V "> ) ++  <" ( M `  V ) "> ) ) )
215 ccatopth 13470 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++ 
<" U "> )  e. Word  ( I  X.  2o )  /\  ( <" ( M `  U ) "> ++  ( ( A `  K
) substr  <. P ,  (
# `  ( A `  K ) ) >.
) )  e. Word  (
I  X.  2o ) )  /\  ( ( ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++ 
<" V "> ) ++  <" ( M `
 V ) "> )  e. Word  (
I  X.  2o )  /\  ( ( B `
 L ) substr  <. Q ,  ( # `  ( B `  L )
) >. )  e. Word  (
I  X.  2o ) )  /\  ( # `  ( ( ( A `
 K ) substr  <. 0 ,  P >. ) ++ 
<" U "> ) )  =  (
# `  ( (
( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V "> ) ++  <" ( M `  V ) "> ) ) )  ->  ( ( ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++  <" U "> ) ++  ( <" ( M `  U ) "> ++  ( ( A `  K
) substr  <. P ,  (
# `  ( A `  K ) ) >.
) ) )  =  ( ( ( ( ( B `  L
) substr  <. 0 ,  Q >. ) ++  <" V "> ) ++  <" ( M `  V ) "> ) ++  ( ( B `  L ) substr  <. Q ,  ( # `  ( B `  L
) ) >. )
)  <->  ( ( ( ( A `  K
) substr  <. 0 ,  P >. ) ++  <" U "> )  =  (
( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++ 
<" V "> ) ++  <" ( M `
 V ) "> )  /\  ( <" ( M `  U ) "> ++  ( ( A `  K
) substr  <. P ,  (
# `  ( A `  K ) ) >.
) )  =  ( ( B `  L
) substr  <. Q ,  (
# `  ( B `  L ) ) >.
) ) ) )
216183, 187, 193, 194, 214, 215syl221anc 1337 . . . . . . . . . . . . 13  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  (
( ( ( ( A `  K ) substr  <. 0 ,  P >. ) ++ 
<" U "> ) ++  ( <" ( M `  U ) "> ++  ( ( A `
 K ) substr  <. P ,  ( # `  ( A `  K )
) >. ) ) )  =  ( ( ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V "> ) ++  <" ( M `  V ) "> ) ++  ( ( B `  L ) substr  <. Q ,  ( # `  ( B `  L
) ) >. )
)  <->  ( ( ( ( A `  K
) substr  <. 0 ,  P >. ) ++  <" U "> )  =  (
( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++ 
<" V "> ) ++  <" ( M `
 V ) "> )  /\  ( <" ( M `  U ) "> ++  ( ( A `  K
) substr  <. P ,  (
# `  ( A `  K ) ) >.
) )  =  ( ( B `  L
) substr  <. Q ,  (
# `  ( B `  L ) ) >.
) ) ) )
217182, 216mpbid 222 . . . . . . . . . . . 12  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  (
( ( ( A `
 K ) substr  <. 0 ,  P >. ) ++ 
<" U "> )  =  ( (
( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V "> ) ++  <" ( M `  V ) "> )  /\  ( <" ( M `  U ) "> ++  ( ( A `  K
) substr  <. P ,  (
# `  ( A `  K ) ) >.
) )  =  ( ( B `  L
) substr  <. Q ,  (
# `  ( B `  L ) ) >.
) ) )
218217simpld 475 . . . . . . . . . . 11  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  (
( ( A `  K ) substr  <. 0 ,  P >. ) ++  <" U "> )  =  ( ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++ 
<" V "> ) ++  <" ( M `
 V ) "> ) )
219 ccatopth 13470 . . . . . . . . . . . 12  |-  ( ( ( ( ( A `
 K ) substr  <. 0 ,  P >. )  e. Word  ( I  X.  2o )  /\  <" U ">  e. Word  ( I  X.  2o ) )  /\  ( ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++ 
<" V "> )  e. Word  ( I  X.  2o )  /\  <" ( M `  V
) ">  e. Word  ( I  X.  2o ) )  /\  ( # `  ( ( A `  K ) substr  <. 0 ,  P >. ) )  =  ( # `  (
( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V "> ) ) )  ->  ( ( ( ( A `  K
) substr  <. 0 ,  P >. ) ++  <" U "> )  =  (
( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++ 
<" V "> ) ++  <" ( M `
 V ) "> )  <->  ( (
( A `  K
) substr  <. 0 ,  P >. )  =  ( ( ( B `  L
) substr  <. 0 ,  Q >. ) ++  <" V "> )  /\  <" U ">  =  <" ( M `  V ) "> ) ) )
220208, 209, 190, 191, 202, 219syl221anc 1337 . . . . . . . . . . 11  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  (
( ( ( A `
 K ) substr  <. 0 ,  P >. ) ++ 
<" U "> )  =  ( (
( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V "> ) ++  <" ( M `  V ) "> )  <->  ( (
( A `  K
) substr  <. 0 ,  P >. )  =  ( ( ( B `  L
) substr  <. 0 ,  Q >. ) ++  <" V "> )  /\  <" U ">  =  <" ( M `  V ) "> ) ) )
221218, 220mpbid 222 . . . . . . . . . 10  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  (
( ( A `  K ) substr  <. 0 ,  P >. )  =  ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V "> )  /\  <" U ">  =  <" ( M `  V ) "> ) )
222221simpld 475 . . . . . . . . 9  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  (
( A `  K
) substr  <. 0 ,  P >. )  =  ( ( ( B `  L
) substr  <. 0 ,  Q >. ) ++  <" V "> ) )
223222oveq1d 6665 . . . . . . . 8  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  (
( ( A `  K ) substr  <. 0 ,  P >. ) ++  ( ( A `  K ) substr  <. P ,  ( # `  ( A `  K
) ) >. )
)  =  ( ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++  <" V "> ) ++  ( ( A `  K ) substr  <. P ,  ( # `  ( A `  K
) ) >. )
) )
224123adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  (
( B `  L
) substr  <. 0 ,  Q >. )  e. Word  ( I  X.  2o ) )
225172adantr 481 . . . . . . . . 9  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  <" V ">  e. Word  ( I  X.  2o ) )
226 ccatass 13371 . . . . . . . . 9  |-  ( ( ( ( B `  L ) substr  <. 0 ,  Q >. )  e. Word  (
I  X.  2o )  /\  <" V ">  e. Word  ( I  X.  2o )  /\  (
( A `  K
) substr  <. P ,  (
# `  ( A `  K ) ) >.
)  e. Word  ( I  X.  2o ) )  -> 
( ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++ 
<" V "> ) ++  ( ( A `  K ) substr  <. P , 
( # `  ( A `
 K ) )
>. ) )  =  ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++  ( <" V "> ++  ( ( A `  K
) substr  <. P ,  (
# `  ( A `  K ) ) >.
) ) ) )
227224, 225, 185, 226syl3anc 1326 . . . . . . . 8  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  (
( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++ 
<" V "> ) ++  ( ( A `  K ) substr  <. P , 
( # `  ( A `
 K ) )
>. ) )  =  ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++  ( <" V "> ++  ( ( A `  K
) substr  <. P ,  (
# `  ( A `  K ) ) >.
) ) ) )
228221simprd 479 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  <" U ">  =  <" ( M `  V ) "> )
229 s111 13395 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  ( I  X.  2o )  /\  ( M `  V )  e.  ( I  X.  2o ) )  ->  ( <" U ">  =  <" ( M `
 V ) ">  <->  U  =  ( M `  V )
) )
23091, 106, 229syl2anc 693 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( <" U ">  =  <" ( M `  V ) ">  <->  U  =  ( M `  V )
) )
231230adantr 481 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  ( <" U ">  =  <" ( M `
 V ) ">  <->  U  =  ( M `  V )
) )
232228, 231mpbid 222 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  U  =  ( M `  V ) )
233232fveq2d 6195 . . . . . . . . . . . . 13  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  ( M `  U )  =  ( M `  ( M `  V ) ) )
2348efgmnvl 18127 . . . . . . . . . . . . . . 15  |-  ( V  e.  ( I  X.  2o )  ->  ( M `
 ( M `  V ) )  =  V )
235102, 234syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( M `  ( M `  V )
)  =  V )
236235adantr 481 . . . . . . . . . . . . 13  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  ( M `  ( M `  V ) )  =  V )
237233, 236eqtrd 2656 . . . . . . . . . . . 12  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  ( M `  U )  =  V )
238237s1eqd 13381 . . . . . . . . . . 11  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  <" ( M `  U ) ">  =  <" V "> )
239238oveq1d 6665 . . . . . . . . . 10  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  ( <" ( M `  U ) "> ++  ( ( A `  K
) substr  <. P ,  (
# `  ( A `  K ) ) >.
) )  =  (
<" V "> ++  ( ( A `  K
) substr  <. P ,  (
# `  ( A `  K ) ) >.
) ) )
240217simprd 479 . . . . . . . . . 10  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  ( <" ( M `  U ) "> ++  ( ( A `  K
) substr  <. P ,  (
# `  ( A `  K ) ) >.
) )  =  ( ( B `  L
) substr  <. Q ,  (
# `  ( B `  L ) ) >.
) )
241239, 240eqtr3d 2658 . . . . . . . . 9  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  ( <" V "> ++  ( ( A `  K
) substr  <. P ,  (
# `  ( A `  K ) ) >.
) )  =  ( ( B `  L
) substr  <. Q ,  (
# `  ( B `  L ) ) >.
) )
242241oveq2d 6666 . . . . . . . 8  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  (
( ( B `  L ) substr  <. 0 ,  Q >. ) ++  ( <" V "> ++  ( ( A `  K
) substr  <. P ,  (
# `  ( A `  K ) ) >.
) ) )  =  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( B `  L ) substr  <. Q , 
( # `  ( B `
 L ) )
>. ) ) )
243223, 227, 2423eqtrd 2660 . . . . . . 7  |-  ( (
ph  /\  P  =  ( Q  +  1
) )  ->  (
( ( A `  K ) substr  <. 0 ,  P >. ) ++  ( ( A `  K ) substr  <. P ,  ( # `  ( A `  K
) ) >. )
)  =  ( ( ( B `  L
) substr  <. 0 ,  Q >. ) ++  ( ( B `
 L ) substr  <. Q ,  ( # `  ( B `  L )
) >. ) ) )
24489, 243mtand 691 . . . . . 6  |-  ( ph  ->  -.  P  =  ( Q  +  1 ) )
245244pm2.21d 118 . . . . 5  |-  ( ph  ->  ( P  =  ( Q  +  1 )  ->  ( A ` 
0 )  =  ( B `  0 ) ) )
246 elfzelz 12342 . . . . . . . . . . . 12  |-  ( Q  e.  ( 0 ... ( # `  ( B `  L )
) )  ->  Q  e.  ZZ )
24774, 246syl 17 . . . . . . . . . . 11  |-  ( ph  ->  Q  e.  ZZ )
248247zcnd 11483 . . . . . . . . . 10  |-  ( ph  ->  Q  e.  CC )
249 1cnd 10056 . . . . . . . . . 10  |-  ( ph  ->  1  e.  CC )
250248, 249, 249addassd 10062 . . . . . . . . 9  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  =  ( Q  +  ( 1  +  1 ) ) )
251 df-2 11079 . . . . . . . . . 10  |-  2  =  ( 1  +  1 )
252251oveq2i 6661 . . . . . . . . 9  |-  ( Q  +  2 )  =  ( Q  +  ( 1  +  1 ) )
253250, 252syl6eqr 2674 . . . . . . . 8  |-  ( ph  ->  ( ( Q  + 
1 )  +  1 )  =  ( Q  +  2 ) )
254253fveq2d 6195 . . . . . . 7  |-  ( ph  ->  ( ZZ>= `  ( ( Q  +  1 )  +  1 ) )  =  ( ZZ>= `  ( Q  +  2 ) ) )
255254eleq2d 2687 . . . . . 6  |-  ( ph  ->  ( P  e.  (
ZZ>= `  ( ( Q  +  1 )  +  1 ) )  <->  P  e.  ( ZZ>= `  ( Q  +  2 ) ) ) )
2563, 7, 8, 9, 10, 11efgsfo 18152 . . . . . . . . . 10  |-  S : dom  S -onto-> W
257 swrdcl 13419 . . . . . . . . . . . . 13  |-  ( ( A `  K )  e. Word  ( I  X.  2o )  ->  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K
) ) >. )  e. Word  ( I  X.  2o ) )
25837, 257syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. )  e. Word  (
I  X.  2o ) )
259 ccatcl 13359 . . . . . . . . . . . 12  |-  ( ( ( ( B `  L ) substr  <. 0 ,  Q >. )  e. Word  (
I  X.  2o )  /\  ( ( A `
 K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. )  e. Word  (
I  X.  2o ) )  ->  ( (
( B `  L
) substr  <. 0 ,  Q >. ) ++  ( ( A `
 K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  e. Word 
( I  X.  2o ) )
260123, 258, 259syl2anc 693 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  e. Word 
( I  X.  2o ) )
2613efgrcl 18128 . . . . . . . . . . . . 13  |-  ( ( A `  K )  e.  W  ->  (
I  e.  _V  /\  W  = Word  ( I  X.  2o ) ) )
26236, 261syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( I  e.  _V  /\  W  = Word  ( I  X.  2o ) ) )
263262simprd 479 . . . . . . . . . . 11  |-  ( ph  ->  W  = Word  ( I  X.  2o ) )
264260, 263eleqtrrd 2704 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  e.  W )
265 foelrn 6378 . . . . . . . . . 10  |-  ( ( S : dom  S -onto-> W  /\  ( ( ( B `  L ) substr  <. 0 ,  Q >. ) ++  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  e.  W )  ->  E. c  e.  dom  S ( ( ( B `  L
) substr  <. 0 ,  Q >. ) ++  ( ( A `
 K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  =  ( S `  c
) )
266256, 264, 265sylancr 695 . . . . . . . . 9  |-  ( ph  ->  E. c  e.  dom  S ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  =  ( S `  c
) )
267266adantr 481 . . . . . . . 8  |-  ( (
ph  /\  P  e.  ( ZZ>= `  ( Q  +  2 ) ) )  ->  E. c  e.  dom  S ( ( ( B `  L
) substr  <. 0 ,  Q >. ) ++  ( ( A `
 K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  =  ( S `  c
) )
26820ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  ( ZZ>= `  ( Q  +  2 ) ) )  /\  ( c  e.  dom  S  /\  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  =  ( S `  c
) ) )  ->  A. a  e.  dom  S A. b  e.  dom  S ( ( # `  ( S `  a )
)  <  ( # `  ( S `  A )
)  ->  ( ( S `  a )  =  ( S `  b )  ->  (
a `  0 )  =  ( b ` 
0 ) ) ) )
2696ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  ( ZZ>= `  ( Q  +  2 ) ) )  /\  ( c  e.  dom  S  /\  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  =  ( S `  c
) ) )  ->  A  e.  dom  S )
27021ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  ( ZZ>= `  ( Q  +  2 ) ) )  /\  ( c  e.  dom  S  /\  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  =  ( S `  c
) ) )  ->  B  e.  dom  S )
27122ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  ( ZZ>= `  ( Q  +  2 ) ) )  /\  ( c  e.  dom  S  /\  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  =  ( S `  c
) ) )  -> 
( S `  A
)  =  ( S `
 B ) )
27223ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  ( ZZ>= `  ( Q  +  2 ) ) )  /\  ( c  e.  dom  S  /\  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  =  ( S `  c
) ) )  ->  -.  ( A `  0
)  =  ( B `
 0 ) )
27338ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  ( ZZ>= `  ( Q  +  2 ) ) )  /\  ( c  e.  dom  S  /\  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  =  ( S `  c
) ) )  ->  P  e.  ( 0 ... ( # `  ( A `  K )
) ) )
27474ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  ( ZZ>= `  ( Q  +  2 ) ) )  /\  ( c  e.  dom  S  /\  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  =  ( S `  c
) ) )  ->  Q  e.  ( 0 ... ( # `  ( B `  L )
) ) )
27591ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  ( ZZ>= `  ( Q  +  2 ) ) )  /\  ( c  e.  dom  S  /\  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  =  ( S `  c
) ) )  ->  U  e.  ( I  X.  2o ) )
276102ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  ( ZZ>= `  ( Q  +  2 ) ) )  /\  ( c  e.  dom  S  /\  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  =  ( S `  c
) ) )  ->  V  e.  ( I  X.  2o ) )
27790ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  ( ZZ>= `  ( Q  +  2 ) ) )  /\  ( c  e.  dom  S  /\  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  =  ( S `  c
) ) )  -> 
( S `  A
)  =  ( P ( T `  ( A `  K )
) U ) )
278101ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  ( ZZ>= `  ( Q  +  2 ) ) )  /\  ( c  e.  dom  S  /\  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  =  ( S `  c
) ) )  -> 
( S `  B
)  =  ( Q ( T `  ( B `  L )
) V ) )
2792ad2antrr 762 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  ( ZZ>= `  ( Q  +  2 ) ) )  /\  ( c  e.  dom  S  /\  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  =  ( S `  c
) ) )  ->  -.  ( A `  K
)  =  ( B `
 L ) )
280 simplr 792 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  ( ZZ>= `  ( Q  +  2 ) ) )  /\  ( c  e.  dom  S  /\  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  =  ( S `  c
) ) )  ->  P  e.  ( ZZ>= `  ( Q  +  2
) ) )
281 simprl 794 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  ( ZZ>= `  ( Q  +  2 ) ) )  /\  ( c  e.  dom  S  /\  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  =  ( S `  c
) ) )  -> 
c  e.  dom  S
)
282 simprr 796 . . . . . . . . . 10  |-  ( ( ( ph  /\  P  e.  ( ZZ>= `  ( Q  +  2 ) ) )  /\  ( c  e.  dom  S  /\  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  =  ( S `  c
) ) )  -> 
( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  =  ( S `  c
) )
283282eqcomd 2628 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  ( ZZ>= `  ( Q  +  2 ) ) )  /\  ( c  e.  dom  S  /\  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  =  ( S `  c
) ) )  -> 
( S `  c
)  =  ( ( ( B `  L
) substr  <. 0 ,  Q >. ) ++  ( ( A `
 K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) ) )
2843, 7, 8, 9, 10, 11, 268, 269, 270, 271, 272, 19, 60, 273, 274, 275, 276, 277, 278, 279, 280, 281, 283efgredlemd 18157 . . . . . . . 8  |-  ( ( ( ph  /\  P  e.  ( ZZ>= `  ( Q  +  2 ) ) )  /\  ( c  e.  dom  S  /\  ( ( ( B `
 L ) substr  <. 0 ,  Q >. ) ++  ( ( A `  K ) substr  <. ( Q  +  2 ) ,  ( # `  ( A `  K )
) >. ) )  =  ( S `  c
) ) )  -> 
( A `  0
)  =  ( B `
 0 ) )
285267, 284rexlimddv 3035 . . . . . . 7  |-  ( (
ph  /\  P  e.  ( ZZ>= `  ( Q  +  2 ) ) )  ->  ( A `  0 )  =  ( B `  0
) )
286285ex 450 . . . . . 6  |-  ( ph  ->  ( P  e.  (
ZZ>= `  ( Q  + 
2 ) )  -> 
( A `  0
)  =  ( B `
 0 ) ) )
287255, 286sylbid 230 . . . . 5  |-  ( ph  ->  ( P  e.  (
ZZ>= `  ( ( Q  +  1 )  +  1 ) )  -> 
( A `  0
)  =  ( B `
 0 ) ) )
288245, 287jaod 395 . . . 4  |-  ( ph  ->  ( ( P  =  ( Q  +  1 )  \/  P  e.  ( ZZ>= `  ( ( Q  +  1 )  +  1 ) ) )  ->  ( A `  0 )  =  ( B `  0
) ) )
289159, 288syl5 34 . . 3  |-  ( ph  ->  ( P  e.  (
ZZ>= `  ( Q  + 
1 ) )  -> 
( A `  0
)  =  ( B `
 0 ) ) )
290158, 289jaod 395 . 2  |-  ( ph  ->  ( ( P  =  Q  \/  P  e.  ( ZZ>= `  ( Q  +  1 ) ) )  ->  ( A `  0 )  =  ( B `  0
) ) )
2911, 290syl5 34 1  |-  ( ph  ->  ( P  e.  (
ZZ>= `  Q )  -> 
( A `  0
)  =  ( B `
 0 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571   (/)c0 3915   {csn 4177   <.cop 4183   <.cotp 4185   U_ciun 4520   class class class wbr 4653    |-> cmpt 4729    _I cid 5023    X. cxp 5112   dom cdm 5114   ran crn 5115   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1oc1o 7553   2oc2o 7554   0cc0 9936   1c1 9937    + caddc 9939    < clt 10074    - cmin 10266   NNcn 11020   2c2 11070   NN0cn0 11292   ZZcz 11377   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   ++ cconcat 13293   <"cs1 13294   substr csubstr 13295   splice csplice 13296   <"cs2 13586   ~FG cefg 18119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-ot 4186  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-substr 13303  df-splice 13304  df-s2 13593
This theorem is referenced by:  efgredlemb  18159
  Copyright terms: Public domain W3C validator