| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0z | Structured version Visualization version Unicode version | ||
| Description: Zero is an integer. (Contributed by NM, 12-Jan-2002.) |
| Ref | Expression |
|---|---|
| 0z |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 10040 |
. 2
| |
| 2 | eqid 2622 |
. . 3
| |
| 3 | 2 | 3mix1i 1233 |
. 2
|
| 4 | elz 11379 |
. 2
| |
| 5 | 1, 3, 4 | mpbir2an 955 |
1
|
| Copyright terms: Public domain | W3C validator |