MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2swrd1eqwrdeq Structured version   Visualization version   Unicode version

Theorem 2swrd1eqwrdeq 13454
Description: Two (nonempty) words are equal if and only if they have the same prefix and the same single symbol suffix. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Revised by Mario Carneiro/AV, 23-Oct-2018.)
Assertion
Ref Expression
2swrd1eqwrdeq  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  ->  ( W  =  U  <->  ( ( # `
 W )  =  ( # `  U
)  /\  ( ( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. )  =  ( U substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. )  /\  ( lastS  `  W )  =  ( lastS  `  U ) ) ) ) )

Proof of Theorem 2swrd1eqwrdeq
StepHypRef Expression
1 lencl 13324 . . . . . . 7  |-  ( W  e. Word  V  ->  ( # `
 W )  e. 
NN0 )
2 nn0z 11400 . . . . . . 7  |-  ( (
# `  W )  e.  NN0  ->  ( # `  W
)  e.  ZZ )
3 elnnz 11387 . . . . . . . 8  |-  ( (
# `  W )  e.  NN  <->  ( ( # `  W )  e.  ZZ  /\  0  <  ( # `  W ) ) )
43simplbi2 655 . . . . . . 7  |-  ( (
# `  W )  e.  ZZ  ->  ( 0  <  ( # `  W
)  ->  ( # `  W
)  e.  NN ) )
51, 2, 43syl 18 . . . . . 6  |-  ( W  e. Word  V  ->  (
0  <  ( # `  W
)  ->  ( # `  W
)  e.  NN ) )
65a1d 25 . . . . 5  |-  ( W  e. Word  V  ->  ( U  e. Word  V  ->  (
0  <  ( # `  W
)  ->  ( # `  W
)  e.  NN ) ) )
763imp 1256 . . . 4  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  ->  ( # `
 W )  e.  NN )
8 fzo0end 12560 . . . 4  |-  ( (
# `  W )  e.  NN  ->  ( ( # `
 W )  - 
1 )  e.  ( 0..^ ( # `  W
) ) )
97, 8syl 17 . . 3  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  ->  (
( # `  W )  -  1 )  e.  ( 0..^ ( # `  W ) ) )
10 2swrdeqwrdeq 13453 . . 3  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  (
( # `  W )  -  1 )  e.  ( 0..^ ( # `  W ) ) )  ->  ( W  =  U  <->  ( ( # `  W )  =  (
# `  U )  /\  ( ( W substr  <. 0 ,  ( ( # `  W )  -  1 ) >. )  =  ( U substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. )  /\  ( W substr  <. ( ( # `  W )  -  1 ) ,  ( # `  W ) >. )  =  ( U substr  <. (
( # `  W )  -  1 ) ,  ( # `  W
) >. ) ) ) ) )
119, 10syld3an3 1371 . 2  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  ->  ( W  =  U  <->  ( ( # `
 W )  =  ( # `  U
)  /\  ( ( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. )  =  ( U substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. )  /\  ( W substr  <. ( ( # `  W )  -  1 ) ,  ( # `  W ) >. )  =  ( U substr  <. (
( # `  W )  -  1 ) ,  ( # `  W
) >. ) ) ) ) )
12 hashneq0 13155 . . . . . . . . . . 11  |-  ( W  e. Word  V  ->  (
0  <  ( # `  W
)  <->  W  =/=  (/) ) )
1312biimpd 219 . . . . . . . . . 10  |-  ( W  e. Word  V  ->  (
0  <  ( # `  W
)  ->  W  =/=  (/) ) )
1413imdistani 726 . . . . . . . . 9  |-  ( ( W  e. Word  V  /\  0  <  ( # `  W
) )  ->  ( W  e. Word  V  /\  W  =/=  (/) ) )
15143adant2 1080 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  ->  ( W  e. Word  V  /\  W  =/=  (/) ) )
1615adantr 481 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  /\  ( # `
 W )  =  ( # `  U
) )  ->  ( W  e. Word  V  /\  W  =/=  (/) ) )
17 swrdlsw 13452 . . . . . . 7  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  ( W substr  <. ( ( # `  W )  -  1 ) ,  ( # `  W ) >. )  =  <" ( lastS  `  W
) "> )
1816, 17syl 17 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  /\  ( # `
 W )  =  ( # `  U
) )  ->  ( W substr  <. ( ( # `  W )  -  1 ) ,  ( # `  W ) >. )  =  <" ( lastS  `  W
) "> )
19 breq2 4657 . . . . . . . . . 10  |-  ( (
# `  W )  =  ( # `  U
)  ->  ( 0  <  ( # `  W
)  <->  0  <  ( # `
 U ) ) )
20193anbi3d 1405 . . . . . . . . 9  |-  ( (
# `  W )  =  ( # `  U
)  ->  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  < 
( # `  W ) )  <->  ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  U ) ) ) )
21 hashneq0 13155 . . . . . . . . . . . . 13  |-  ( U  e. Word  V  ->  (
0  <  ( # `  U
)  <->  U  =/=  (/) ) )
2221biimpd 219 . . . . . . . . . . . 12  |-  ( U  e. Word  V  ->  (
0  <  ( # `  U
)  ->  U  =/=  (/) ) )
2322imdistani 726 . . . . . . . . . . 11  |-  ( ( U  e. Word  V  /\  0  <  ( # `  U
) )  ->  ( U  e. Word  V  /\  U  =/=  (/) ) )
24233adant1 1079 . . . . . . . . . 10  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  U
) )  ->  ( U  e. Word  V  /\  U  =/=  (/) ) )
25 swrdlsw 13452 . . . . . . . . . 10  |-  ( ( U  e. Word  V  /\  U  =/=  (/) )  ->  ( U substr  <. ( ( # `  U )  -  1 ) ,  ( # `  U ) >. )  =  <" ( lastS  `  U
) "> )
2624, 25syl 17 . . . . . . . . 9  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  U
) )  ->  ( U substr  <. ( ( # `  U )  -  1 ) ,  ( # `  U ) >. )  =  <" ( lastS  `  U
) "> )
2720, 26syl6bi 243 . . . . . . . 8  |-  ( (
# `  W )  =  ( # `  U
)  ->  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  < 
( # `  W ) )  ->  ( U substr  <.
( ( # `  U
)  -  1 ) ,  ( # `  U
) >. )  =  <" ( lastS  `  U ) "> ) )
2827impcom 446 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  /\  ( # `
 W )  =  ( # `  U
) )  ->  ( U substr  <. ( ( # `  U )  -  1 ) ,  ( # `  U ) >. )  =  <" ( lastS  `  U
) "> )
29 oveq1 6657 . . . . . . . . . . 11  |-  ( (
# `  W )  =  ( # `  U
)  ->  ( ( # `
 W )  - 
1 )  =  ( ( # `  U
)  -  1 ) )
30 id 22 . . . . . . . . . . 11  |-  ( (
# `  W )  =  ( # `  U
)  ->  ( # `  W
)  =  ( # `  U ) )
3129, 30opeq12d 4410 . . . . . . . . . 10  |-  ( (
# `  W )  =  ( # `  U
)  ->  <. ( (
# `  W )  -  1 ) ,  ( # `  W
) >.  =  <. (
( # `  U )  -  1 ) ,  ( # `  U
) >. )
3231oveq2d 6666 . . . . . . . . 9  |-  ( (
# `  W )  =  ( # `  U
)  ->  ( U substr  <.
( ( # `  W
)  -  1 ) ,  ( # `  W
) >. )  =  ( U substr  <. ( ( # `  U )  -  1 ) ,  ( # `  U ) >. )
)
3332eqeq1d 2624 . . . . . . . 8  |-  ( (
# `  W )  =  ( # `  U
)  ->  ( ( U substr  <. ( ( # `  W )  -  1 ) ,  ( # `  W ) >. )  =  <" ( lastS  `  U
) ">  <->  ( U substr  <.
( ( # `  U
)  -  1 ) ,  ( # `  U
) >. )  =  <" ( lastS  `  U ) "> ) )
3433adantl 482 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  /\  ( # `
 W )  =  ( # `  U
) )  ->  (
( U substr  <. ( (
# `  W )  -  1 ) ,  ( # `  W
) >. )  =  <" ( lastS  `  U ) ">  <->  ( U substr  <. (
( # `  U )  -  1 ) ,  ( # `  U
) >. )  =  <" ( lastS  `  U ) "> ) )
3528, 34mpbird 247 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  /\  ( # `
 W )  =  ( # `  U
) )  ->  ( U substr  <. ( ( # `  W )  -  1 ) ,  ( # `  W ) >. )  =  <" ( lastS  `  U
) "> )
3618, 35eqeq12d 2637 . . . . 5  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  /\  ( # `
 W )  =  ( # `  U
) )  ->  (
( W substr  <. ( (
# `  W )  -  1 ) ,  ( # `  W
) >. )  =  ( U substr  <. ( ( # `  W )  -  1 ) ,  ( # `  W ) >. )  <->  <" ( lastS  `  W ) ">  =  <" ( lastS  `  U ) "> ) )
37 hashgt0n0 13156 . . . . . . . . 9  |-  ( ( W  e. Word  V  /\  0  <  ( # `  W
) )  ->  W  =/=  (/) )
38 lswcl 13355 . . . . . . . . 9  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  ( lastS  `  W )  e.  V
)
3937, 38syldan 487 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  0  <  ( # `  W
) )  ->  ( lastS  `  W )  e.  V
)
40393adant2 1080 . . . . . . 7  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  ->  ( lastS  `  W )  e.  V
)
4140adantr 481 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  /\  ( # `
 W )  =  ( # `  U
) )  ->  ( lastS  `  W )  e.  V
)
42 hashgt0n0 13156 . . . . . . . . . 10  |-  ( ( U  e. Word  V  /\  0  <  ( # `  U
) )  ->  U  =/=  (/) )
43 lswcl 13355 . . . . . . . . . 10  |-  ( ( U  e. Word  V  /\  U  =/=  (/) )  ->  ( lastS  `  U )  e.  V
)
4442, 43syldan 487 . . . . . . . . 9  |-  ( ( U  e. Word  V  /\  0  <  ( # `  U
) )  ->  ( lastS  `  U )  e.  V
)
45443adant1 1079 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  U
) )  ->  ( lastS  `  U )  e.  V
)
4620, 45syl6bi 243 . . . . . . 7  |-  ( (
# `  W )  =  ( # `  U
)  ->  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  < 
( # `  W ) )  ->  ( lastS  `  U
)  e.  V ) )
4746impcom 446 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  /\  ( # `
 W )  =  ( # `  U
) )  ->  ( lastS  `  U )  e.  V
)
48 s111 13395 . . . . . 6  |-  ( ( ( lastS  `  W )  e.  V  /\  ( lastS  `  U )  e.  V
)  ->  ( <" ( lastS  `  W ) ">  =  <" ( lastS  `  U ) ">  <->  ( lastS  `  W )  =  ( lastS  `  U ) ) )
4941, 47, 48syl2anc 693 . . . . 5  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  /\  ( # `
 W )  =  ( # `  U
) )  ->  ( <" ( lastS  `  W
) ">  =  <" ( lastS  `  U
) ">  <->  ( lastS  `  W
)  =  ( lastS  `  U
) ) )
5036, 49bitrd 268 . . . 4  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  /\  ( # `
 W )  =  ( # `  U
) )  ->  (
( W substr  <. ( (
# `  W )  -  1 ) ,  ( # `  W
) >. )  =  ( U substr  <. ( ( # `  W )  -  1 ) ,  ( # `  W ) >. )  <->  ( lastS  `  W )  =  ( lastS  `  U ) ) )
5150anbi2d 740 . . 3  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  /\  ( # `
 W )  =  ( # `  U
) )  ->  (
( ( W substr  <. 0 ,  ( ( # `  W )  -  1 ) >. )  =  ( U substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. )  /\  ( W substr  <. ( ( # `  W )  -  1 ) ,  ( # `  W ) >. )  =  ( U substr  <. (
( # `  W )  -  1 ) ,  ( # `  W
) >. ) )  <->  ( ( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. )  =  ( U substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. )  /\  ( lastS  `  W )  =  ( lastS  `  U ) ) ) )
5251pm5.32da 673 . 2  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  ->  (
( ( # `  W
)  =  ( # `  U )  /\  (
( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. )  =  ( U substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. )  /\  ( W substr  <. ( ( # `  W )  -  1 ) ,  ( # `  W ) >. )  =  ( U substr  <. (
( # `  W )  -  1 ) ,  ( # `  W
) >. ) ) )  <-> 
( ( # `  W
)  =  ( # `  U )  /\  (
( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. )  =  ( U substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. )  /\  ( lastS  `  W )  =  ( lastS  `  U ) ) ) ) )
5311, 52bitrd 268 1  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  ->  ( W  =  U  <->  ( ( # `
 W )  =  ( # `  U
)  /\  ( ( W substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. )  =  ( U substr  <. 0 ,  ( ( # `  W
)  -  1 )
>. )  /\  ( lastS  `  W )  =  ( lastS  `  U ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   (/)c0 3915   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    < clt 10074    - cmin 10266   NNcn 11020   NN0cn0 11292   ZZcz 11377  ..^cfzo 12465   #chash 13117  Word cword 13291   lastS clsw 13292   <"cs1 13294   substr csubstr 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-s1 13302  df-substr 13303
This theorem is referenced by:  wwlksnextinj  26794  clwwlksf1  26917
  Copyright terms: Public domain W3C validator