Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pfxsuff1eqwrdeq Structured version   Visualization version   Unicode version

Theorem pfxsuff1eqwrdeq 41407
Description: Two (nonempty) words are equal if and only if they have the same prefix and the same single symbol suffix. Could replace 2swrd1eqwrdeq 13454. (Contributed by AV, 6-May-2020.)
Assertion
Ref Expression
pfxsuff1eqwrdeq  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  ->  ( W  =  U  <->  ( ( # `
 W )  =  ( # `  U
)  /\  ( ( W prefix  ( ( # `  W
)  -  1 ) )  =  ( U prefix 
( ( # `  W
)  -  1 ) )  /\  ( lastS  `  W
)  =  ( lastS  `  U
) ) ) ) )

Proof of Theorem pfxsuff1eqwrdeq
StepHypRef Expression
1 hashgt0n0 13156 . . . . . 6  |-  ( ( W  e. Word  V  /\  0  <  ( # `  W
) )  ->  W  =/=  (/) )
2 lennncl 13325 . . . . . 6  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  ( # `
 W )  e.  NN )
31, 2syldan 487 . . . . 5  |-  ( ( W  e. Word  V  /\  0  <  ( # `  W
) )  ->  ( # `
 W )  e.  NN )
433adant2 1080 . . . 4  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  ->  ( # `
 W )  e.  NN )
5 fzo0end 12560 . . . 4  |-  ( (
# `  W )  e.  NN  ->  ( ( # `
 W )  - 
1 )  e.  ( 0..^ ( # `  W
) ) )
64, 5syl 17 . . 3  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  ->  (
( # `  W )  -  1 )  e.  ( 0..^ ( # `  W ) ) )
7 pfxsuffeqwrdeq 41406 . . 3  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  (
( # `  W )  -  1 )  e.  ( 0..^ ( # `  W ) ) )  ->  ( W  =  U  <->  ( ( # `  W )  =  (
# `  U )  /\  ( ( W prefix  (
( # `  W )  -  1 ) )  =  ( U prefix  (
( # `  W )  -  1 ) )  /\  ( W substr  <. (
( # `  W )  -  1 ) ,  ( # `  W
) >. )  =  ( U substr  <. ( ( # `  W )  -  1 ) ,  ( # `  W ) >. )
) ) ) )
86, 7syld3an3 1371 . 2  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  ->  ( W  =  U  <->  ( ( # `
 W )  =  ( # `  U
)  /\  ( ( W prefix  ( ( # `  W
)  -  1 ) )  =  ( U prefix 
( ( # `  W
)  -  1 ) )  /\  ( W substr  <. ( ( # `  W
)  -  1 ) ,  ( # `  W
) >. )  =  ( U substr  <. ( ( # `  W )  -  1 ) ,  ( # `  W ) >. )
) ) ) )
9 hashneq0 13155 . . . . . . . . . . 11  |-  ( W  e. Word  V  ->  (
0  <  ( # `  W
)  <->  W  =/=  (/) ) )
109biimpd 219 . . . . . . . . . 10  |-  ( W  e. Word  V  ->  (
0  <  ( # `  W
)  ->  W  =/=  (/) ) )
1110imdistani 726 . . . . . . . . 9  |-  ( ( W  e. Word  V  /\  0  <  ( # `  W
) )  ->  ( W  e. Word  V  /\  W  =/=  (/) ) )
12113adant2 1080 . . . . . . . 8  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  ->  ( W  e. Word  V  /\  W  =/=  (/) ) )
1312adantr 481 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  /\  ( # `
 W )  =  ( # `  U
) )  ->  ( W  e. Word  V  /\  W  =/=  (/) ) )
14 swrdlsw 13452 . . . . . . 7  |-  ( ( W  e. Word  V  /\  W  =/=  (/) )  ->  ( W substr  <. ( ( # `  W )  -  1 ) ,  ( # `  W ) >. )  =  <" ( lastS  `  W
) "> )
1513, 14syl 17 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  /\  ( # `
 W )  =  ( # `  U
) )  ->  ( W substr  <. ( ( # `  W )  -  1 ) ,  ( # `  W ) >. )  =  <" ( lastS  `  W
) "> )
16 breq2 4657 . . . . . . . . . 10  |-  ( (
# `  W )  =  ( # `  U
)  ->  ( 0  <  ( # `  W
)  <->  0  <  ( # `
 U ) ) )
17163anbi3d 1405 . . . . . . . . 9  |-  ( (
# `  W )  =  ( # `  U
)  ->  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  < 
( # `  W ) )  <->  ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  U ) ) ) )
18 hashneq0 13155 . . . . . . . . . . . . 13  |-  ( U  e. Word  V  ->  (
0  <  ( # `  U
)  <->  U  =/=  (/) ) )
1918biimpd 219 . . . . . . . . . . . 12  |-  ( U  e. Word  V  ->  (
0  <  ( # `  U
)  ->  U  =/=  (/) ) )
2019imdistani 726 . . . . . . . . . . 11  |-  ( ( U  e. Word  V  /\  0  <  ( # `  U
) )  ->  ( U  e. Word  V  /\  U  =/=  (/) ) )
21203adant1 1079 . . . . . . . . . 10  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  U
) )  ->  ( U  e. Word  V  /\  U  =/=  (/) ) )
22 swrdlsw 13452 . . . . . . . . . 10  |-  ( ( U  e. Word  V  /\  U  =/=  (/) )  ->  ( U substr  <. ( ( # `  U )  -  1 ) ,  ( # `  U ) >. )  =  <" ( lastS  `  U
) "> )
2321, 22syl 17 . . . . . . . . 9  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  U
) )  ->  ( U substr  <. ( ( # `  U )  -  1 ) ,  ( # `  U ) >. )  =  <" ( lastS  `  U
) "> )
2417, 23syl6bi 243 . . . . . . . 8  |-  ( (
# `  W )  =  ( # `  U
)  ->  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  < 
( # `  W ) )  ->  ( U substr  <.
( ( # `  U
)  -  1 ) ,  ( # `  U
) >. )  =  <" ( lastS  `  U ) "> ) )
2524impcom 446 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  /\  ( # `
 W )  =  ( # `  U
) )  ->  ( U substr  <. ( ( # `  U )  -  1 ) ,  ( # `  U ) >. )  =  <" ( lastS  `  U
) "> )
26 oveq1 6657 . . . . . . . . . . 11  |-  ( (
# `  W )  =  ( # `  U
)  ->  ( ( # `
 W )  - 
1 )  =  ( ( # `  U
)  -  1 ) )
27 id 22 . . . . . . . . . . 11  |-  ( (
# `  W )  =  ( # `  U
)  ->  ( # `  W
)  =  ( # `  U ) )
2826, 27opeq12d 4410 . . . . . . . . . 10  |-  ( (
# `  W )  =  ( # `  U
)  ->  <. ( (
# `  W )  -  1 ) ,  ( # `  W
) >.  =  <. (
( # `  U )  -  1 ) ,  ( # `  U
) >. )
2928oveq2d 6666 . . . . . . . . 9  |-  ( (
# `  W )  =  ( # `  U
)  ->  ( U substr  <.
( ( # `  W
)  -  1 ) ,  ( # `  W
) >. )  =  ( U substr  <. ( ( # `  U )  -  1 ) ,  ( # `  U ) >. )
)
3029eqeq1d 2624 . . . . . . . 8  |-  ( (
# `  W )  =  ( # `  U
)  ->  ( ( U substr  <. ( ( # `  W )  -  1 ) ,  ( # `  W ) >. )  =  <" ( lastS  `  U
) ">  <->  ( U substr  <.
( ( # `  U
)  -  1 ) ,  ( # `  U
) >. )  =  <" ( lastS  `  U ) "> ) )
3130adantl 482 . . . . . . 7  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  /\  ( # `
 W )  =  ( # `  U
) )  ->  (
( U substr  <. ( (
# `  W )  -  1 ) ,  ( # `  W
) >. )  =  <" ( lastS  `  U ) ">  <->  ( U substr  <. (
( # `  U )  -  1 ) ,  ( # `  U
) >. )  =  <" ( lastS  `  U ) "> ) )
3225, 31mpbird 247 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  /\  ( # `
 W )  =  ( # `  U
) )  ->  ( U substr  <. ( ( # `  W )  -  1 ) ,  ( # `  W ) >. )  =  <" ( lastS  `  U
) "> )
3315, 32eqeq12d 2637 . . . . 5  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  /\  ( # `
 W )  =  ( # `  U
) )  ->  (
( W substr  <. ( (
# `  W )  -  1 ) ,  ( # `  W
) >. )  =  ( U substr  <. ( ( # `  W )  -  1 ) ,  ( # `  W ) >. )  <->  <" ( lastS  `  W ) ">  =  <" ( lastS  `  U ) "> ) )
34 fvexd 6203 . . . . . 6  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  /\  ( # `
 W )  =  ( # `  U
) )  ->  ( lastS  `  W )  e.  _V )
35 fvex 6201 . . . . . 6  |-  ( lastS  `  U
)  e.  _V
36 s111 13395 . . . . . 6  |-  ( ( ( lastS  `  W )  e.  _V  /\  ( lastS  `  U
)  e.  _V )  ->  ( <" ( lastS  `  W ) ">  =  <" ( lastS  `  U
) ">  <->  ( lastS  `  W
)  =  ( lastS  `  U
) ) )
3734, 35, 36sylancl 694 . . . . 5  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  /\  ( # `
 W )  =  ( # `  U
) )  ->  ( <" ( lastS  `  W
) ">  =  <" ( lastS  `  U
) ">  <->  ( lastS  `  W
)  =  ( lastS  `  U
) ) )
3833, 37bitrd 268 . . . 4  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  /\  ( # `
 W )  =  ( # `  U
) )  ->  (
( W substr  <. ( (
# `  W )  -  1 ) ,  ( # `  W
) >. )  =  ( U substr  <. ( ( # `  W )  -  1 ) ,  ( # `  W ) >. )  <->  ( lastS  `  W )  =  ( lastS  `  U ) ) )
3938anbi2d 740 . . 3  |-  ( ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  /\  ( # `
 W )  =  ( # `  U
) )  ->  (
( ( W prefix  (
( # `  W )  -  1 ) )  =  ( U prefix  (
( # `  W )  -  1 ) )  /\  ( W substr  <. (
( # `  W )  -  1 ) ,  ( # `  W
) >. )  =  ( U substr  <. ( ( # `  W )  -  1 ) ,  ( # `  W ) >. )
)  <->  ( ( W prefix 
( ( # `  W
)  -  1 ) )  =  ( U prefix 
( ( # `  W
)  -  1 ) )  /\  ( lastS  `  W
)  =  ( lastS  `  U
) ) ) )
4039pm5.32da 673 . 2  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  ->  (
( ( # `  W
)  =  ( # `  U )  /\  (
( W prefix  ( ( # `
 W )  - 
1 ) )  =  ( U prefix  ( (
# `  W )  -  1 ) )  /\  ( W substr  <. (
( # `  W )  -  1 ) ,  ( # `  W
) >. )  =  ( U substr  <. ( ( # `  W )  -  1 ) ,  ( # `  W ) >. )
) )  <->  ( ( # `
 W )  =  ( # `  U
)  /\  ( ( W prefix  ( ( # `  W
)  -  1 ) )  =  ( U prefix 
( ( # `  W
)  -  1 ) )  /\  ( lastS  `  W
)  =  ( lastS  `  U
) ) ) ) )
418, 40bitrd 268 1  |-  ( ( W  e. Word  V  /\  U  e. Word  V  /\  0  <  ( # `  W
) )  ->  ( W  =  U  <->  ( ( # `
 W )  =  ( # `  U
)  /\  ( ( W prefix  ( ( # `  W
)  -  1 ) )  =  ( U prefix 
( ( # `  W
)  -  1 ) )  /\  ( lastS  `  W
)  =  ( lastS  `  U
) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915   <.cop 4183   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    < clt 10074    - cmin 10266   NNcn 11020  ..^cfzo 12465   #chash 13117  Word cword 13291   lastS clsw 13292   <"cs1 13294   substr csubstr 13295   prefix cpfx 41381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-lsw 13300  df-s1 13302  df-substr 13303  df-pfx 41382
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator