Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  scutbdaylt Structured version   Visualization version   Unicode version

Theorem scutbdaylt 31922
Description: If a surreal lies in a gap and is not equal to the cut, its birthday is greater than the cut's. (Contributed by Scott Fenton, 11-Dec-2021.)
Assertion
Ref Expression
scutbdaylt  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B )  /\  X  =/=  ( A |s B ) )  -> 
( bday `  ( A |s B ) )  e.  ( bday `  X ) )

Proof of Theorem scutbdaylt
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 1087 . . . . 5  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B )  /\  X  =/=  ( A |s B ) )  ->  A < <s { X } )
2 simp2r 1088 . . . . 5  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B )  /\  X  =/=  ( A |s B ) )  ->  { X } < <s B )
3 snnzg 4308 . . . . . 6  |-  ( X  e.  No  ->  { X }  =/=  (/) )
433ad2ant1 1082 . . . . 5  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B )  /\  X  =/=  ( A |s B ) )  ->  { X }  =/=  (/) )
5 sslttr 31914 . . . . 5  |-  ( ( A < <s { X }  /\  { X } < <s
B  /\  { X }  =/=  (/) )  ->  A < <s B )
61, 2, 4, 5syl3anc 1326 . . . 4  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B )  /\  X  =/=  ( A |s B ) )  ->  A < <s B )
7 scutbday 31913 . . . 4  |-  ( A < <s B  ->  ( bday `  ( A |s B ) )  =  |^| ( bday " { y  e.  No  |  ( A < <s {
y }  /\  {
y } < <s B ) } ) )
86, 7syl 17 . . 3  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B )  /\  X  =/=  ( A |s B ) )  -> 
( bday `  ( A |s B ) )  =  |^| ( bday " { y  e.  No  |  ( A < <s {
y }  /\  {
y } < <s B ) } ) )
9 bdayfn 31889 . . . . 5  |-  bday  Fn  No
10 ssrab2 3687 . . . . 5  |-  { y  e.  No  |  ( A < <s { y }  /\  { y } < <s B ) }  C_  No
11 simp1 1061 . . . . . 6  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B )  /\  X  =/=  ( A |s B ) )  ->  X  e.  No )
12 simp2 1062 . . . . . 6  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B )  /\  X  =/=  ( A |s B ) )  -> 
( A < <s { X }  /\  { X } < <s B ) )
13 sneq 4187 . . . . . . . . 9  |-  ( y  =  X  ->  { y }  =  { X } )
1413breq2d 4665 . . . . . . . 8  |-  ( y  =  X  ->  ( A < <s {
y }  <->  A < <s { X } ) )
1513breq1d 4663 . . . . . . . 8  |-  ( y  =  X  ->  ( { y } < <s B  <->  { X } < <s B ) )
1614, 15anbi12d 747 . . . . . . 7  |-  ( y  =  X  ->  (
( A < <s { y }  /\  { y } < <s B )  <->  ( A < <s { X }  /\  { X }
< <s B ) ) )
1716elrab 3363 . . . . . 6  |-  ( X  e.  { y  e.  No  |  ( A < <s {
y }  /\  {
y } < <s B ) }  <->  ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s B ) ) )
1811, 12, 17sylanbrc 698 . . . . 5  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B )  /\  X  =/=  ( A |s B ) )  ->  X  e.  { y  e.  No  |  ( A < <s {
y }  /\  {
y } < <s B ) } )
19 fnfvima 6496 . . . . 5  |-  ( (
bday  Fn  No  /\  {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) }  C_  No  /\  X  e.  {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } )  ->  ( bday `  X
)  e.  ( bday " { y  e.  No  |  ( A <
<s { y }  /\  { y } < <s
B ) } ) )
209, 10, 18, 19mp3an12i 1428 . . . 4  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B )  /\  X  =/=  ( A |s B ) )  -> 
( bday `  X )  e.  ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) )
21 intss1 4492 . . . 4  |-  ( (
bday `  X )  e.  ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } )  ->  |^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) 
C_  ( bday `  X
) )
2220, 21syl 17 . . 3  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B )  /\  X  =/=  ( A |s B ) )  ->  |^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) 
C_  ( bday `  X
) )
238, 22eqsstrd 3639 . 2  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B )  /\  X  =/=  ( A |s B ) )  -> 
( bday `  ( A |s B ) )  C_  ( bday `  X ) )
24 simprl 794 . . . . . . . . . . . 12  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B ) )  ->  A < <s { X } )
25 simprr 796 . . . . . . . . . . . 12  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B ) )  ->  { X } < <s B )
263adantr 481 . . . . . . . . . . . 12  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B ) )  ->  { X }  =/=  (/) )
2724, 25, 26, 5syl3anc 1326 . . . . . . . . . . 11  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B ) )  ->  A < <s B )
2827, 7syl 17 . . . . . . . . . 10  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B ) )  -> 
( bday `  ( A |s B ) )  =  |^| ( bday " { y  e.  No  |  ( A < <s {
y }  /\  {
y } < <s B ) } ) )
2928eqeq1d 2624 . . . . . . . . 9  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B ) )  -> 
( ( bday `  ( A |s B ) )  =  ( bday `  X )  <->  |^| ( bday " { y  e.  No  |  ( A <
<s { y }  /\  { y } < <s
B ) } )  =  ( bday `  X
) ) )
30 eqcom 2629 . . . . . . . . 9  |-  ( |^| ( bday " { y  e.  No  |  ( A < <s { y }  /\  { y } < <s B ) } )  =  ( bday `  X
)  <->  ( bday `  X
)  =  |^| ( bday " { y  e.  No  |  ( A < <s {
y }  /\  {
y } < <s B ) } ) )
3129, 30syl6bb 276 . . . . . . . 8  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B ) )  -> 
( ( bday `  ( A |s B ) )  =  ( bday `  X )  <->  ( bday `  X )  =  |^| ( bday " { y  e.  No  |  ( A < <s { y }  /\  { y } < <s B ) } ) ) )
3231biimpa 501 . . . . . . 7  |-  ( ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s B ) )  /\  ( bday `  ( A |s B ) )  =  ( bday `  X ) )  -> 
( bday `  X )  =  |^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) )
3317biimpri 218 . . . . . . . 8  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B ) )  ->  X  e.  { y  e.  No  |  ( A < <s {
y }  /\  {
y } < <s B ) } )
3427adantr 481 . . . . . . . . 9  |-  ( ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s B ) )  /\  ( bday `  ( A |s B ) )  =  ( bday `  X ) )  ->  A < <s B )
35 conway 31910 . . . . . . . . 9  |-  ( A < <s B  ->  E! x  e. 
{ y  e.  No  |  ( A <
<s { y }  /\  { y } < <s
B ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) )
3634, 35syl 17 . . . . . . . 8  |-  ( ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s B ) )  /\  ( bday `  ( A |s B ) )  =  ( bday `  X ) )  ->  E! x  e.  { y  e.  No  |  ( A < <s { y }  /\  { y } < <s B ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) )
37 fveq2 6191 . . . . . . . . . . 11  |-  ( x  =  X  ->  ( bday `  x )  =  ( bday `  X
) )
3837eqeq1d 2624 . . . . . . . . . 10  |-  ( x  =  X  ->  (
( bday `  x )  =  |^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } )  <-> 
( bday `  X )  =  |^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) ) )
3938riota2 6633 . . . . . . . . 9  |-  ( ( X  e.  { y  e.  No  |  ( A < <s { y }  /\  { y } < <s B ) }  /\  E! x  e.  { y  e.  No  |  ( A < <s { y }  /\  { y } < <s B ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) )  ->  ( ( bday `  X )  = 
|^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } )  <-> 
( iota_ x  e.  {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) )  =  X ) )
40 eqcom 2629 . . . . . . . . 9  |-  ( (
iota_ x  e.  { y  e.  No  |  ( A < <s { y }  /\  { y } < <s B ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) )  =  X  <->  X  =  ( iota_ x  e.  {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) ) )
4139, 40syl6bb 276 . . . . . . . 8  |-  ( ( X  e.  { y  e.  No  |  ( A < <s { y }  /\  { y } < <s B ) }  /\  E! x  e.  { y  e.  No  |  ( A < <s { y }  /\  { y } < <s B ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) )  ->  ( ( bday `  X )  = 
|^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } )  <-> 
X  =  ( iota_ x  e.  { y  e.  No  |  ( A < <s {
y }  /\  {
y } < <s B ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) ) ) )
4233, 36, 41syl2an2r 876 . . . . . . 7  |-  ( ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s B ) )  /\  ( bday `  ( A |s B ) )  =  ( bday `  X ) )  -> 
( ( bday `  X
)  =  |^| ( bday " { y  e.  No  |  ( A < <s {
y }  /\  {
y } < <s B ) } )  <-> 
X  =  ( iota_ x  e.  { y  e.  No  |  ( A < <s {
y }  /\  {
y } < <s B ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) ) ) )
4332, 42mpbid 222 . . . . . 6  |-  ( ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s B ) )  /\  ( bday `  ( A |s B ) )  =  ( bday `  X ) )  ->  X  =  ( iota_ x  e.  { y  e.  No  |  ( A < <s {
y }  /\  {
y } < <s B ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) ) )
44 scutval 31911 . . . . . . 7  |-  ( A < <s B  ->  ( A |s B )  =  ( iota_ x  e.  {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) ) )
4534, 44syl 17 . . . . . 6  |-  ( ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s B ) )  /\  ( bday `  ( A |s B ) )  =  ( bday `  X ) )  -> 
( A |s B )  =  (
iota_ x  e.  { y  e.  No  |  ( A < <s { y }  /\  { y } < <s B ) }  ( bday `  x )  = 
|^| ( bday " {
y  e.  No  | 
( A < <s { y }  /\  { y } < <s B ) } ) ) )
4643, 45eqtr4d 2659 . . . . 5  |-  ( ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s B ) )  /\  ( bday `  ( A |s B ) )  =  ( bday `  X ) )  ->  X  =  ( A |s B ) )
4746ex 450 . . . 4  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B ) )  -> 
( ( bday `  ( A |s B ) )  =  ( bday `  X )  ->  X  =  ( A |s B ) ) )
4847necon3d 2815 . . 3  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B ) )  -> 
( X  =/=  ( A |s B )  ->  ( bday `  ( A |s B ) )  =/=  ( bday `  X ) ) )
49483impia 1261 . 2  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B )  /\  X  =/=  ( A |s B ) )  -> 
( bday `  ( A |s B ) )  =/=  ( bday `  X ) )
50 bdayelon 31892 . . 3  |-  ( bday `  ( A |s B ) )  e.  On
51 bdayelon 31892 . . 3  |-  ( bday `  X )  e.  On
52 onelpss 5764 . . 3  |-  ( ( ( bday `  ( A |s B ) )  e.  On  /\  ( bday `  X )  e.  On )  ->  (
( bday `  ( A |s B ) )  e.  ( bday `  X )  <->  ( ( bday `  ( A |s B ) ) 
C_  ( bday `  X
)  /\  ( bday `  ( A |s B ) )  =/=  ( bday `  X
) ) ) )
5350, 51, 52mp2an 708 . 2  |-  ( (
bday `  ( A |s B ) )  e.  ( bday `  X )  <->  ( ( bday `  ( A |s B ) ) 
C_  ( bday `  X
)  /\  ( bday `  ( A |s B ) )  =/=  ( bday `  X
) ) )
5423, 49, 53sylanbrc 698 1  |-  ( ( X  e.  No  /\  ( A < <s { X }  /\  { X } < <s
B )  /\  X  =/=  ( A |s B ) )  -> 
( bday `  ( A |s B ) )  e.  ( bday `  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E!wreu 2914   {crab 2916    C_ wss 3574   (/)c0 3915   {csn 4177   |^|cint 4475   class class class wbr 4653   "cima 5117   Oncon0 5723    Fn wfn 5883   ` cfv 5888   iota_crio 6610  (class class class)co 6650   Nocsur 31793   bdaycbday 31795   <
<scsslt 31896   |scscut 31898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797  df-bday 31798  df-sslt 31897  df-scut 31899
This theorem is referenced by:  slerec  31923
  Copyright terms: Public domain W3C validator