| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > scutbdaylt | Structured version Visualization version Unicode version | ||
| Description: If a surreal lies in a gap and is not equal to the cut, its birthday is greater than the cut's. (Contributed by Scott Fenton, 11-Dec-2021.) |
| Ref | Expression |
|---|---|
| scutbdaylt |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2l 1087 |
. . . . 5
| |
| 2 | simp2r 1088 |
. . . . 5
| |
| 3 | snnzg 4308 |
. . . . . 6
| |
| 4 | 3 | 3ad2ant1 1082 |
. . . . 5
|
| 5 | sslttr 31914 |
. . . . 5
| |
| 6 | 1, 2, 4, 5 | syl3anc 1326 |
. . . 4
|
| 7 | scutbday 31913 |
. . . 4
| |
| 8 | 6, 7 | syl 17 |
. . 3
|
| 9 | bdayfn 31889 |
. . . . 5
| |
| 10 | ssrab2 3687 |
. . . . 5
| |
| 11 | simp1 1061 |
. . . . . 6
| |
| 12 | simp2 1062 |
. . . . . 6
| |
| 13 | sneq 4187 |
. . . . . . . . 9
| |
| 14 | 13 | breq2d 4665 |
. . . . . . . 8
|
| 15 | 13 | breq1d 4663 |
. . . . . . . 8
|
| 16 | 14, 15 | anbi12d 747 |
. . . . . . 7
|
| 17 | 16 | elrab 3363 |
. . . . . 6
|
| 18 | 11, 12, 17 | sylanbrc 698 |
. . . . 5
|
| 19 | fnfvima 6496 |
. . . . 5
| |
| 20 | 9, 10, 18, 19 | mp3an12i 1428 |
. . . 4
|
| 21 | intss1 4492 |
. . . 4
| |
| 22 | 20, 21 | syl 17 |
. . 3
|
| 23 | 8, 22 | eqsstrd 3639 |
. 2
|
| 24 | simprl 794 |
. . . . . . . . . . . 12
| |
| 25 | simprr 796 |
. . . . . . . . . . . 12
| |
| 26 | 3 | adantr 481 |
. . . . . . . . . . . 12
|
| 27 | 24, 25, 26, 5 | syl3anc 1326 |
. . . . . . . . . . 11
|
| 28 | 27, 7 | syl 17 |
. . . . . . . . . 10
|
| 29 | 28 | eqeq1d 2624 |
. . . . . . . . 9
|
| 30 | eqcom 2629 |
. . . . . . . . 9
| |
| 31 | 29, 30 | syl6bb 276 |
. . . . . . . 8
|
| 32 | 31 | biimpa 501 |
. . . . . . 7
|
| 33 | 17 | biimpri 218 |
. . . . . . . 8
|
| 34 | 27 | adantr 481 |
. . . . . . . . 9
|
| 35 | conway 31910 |
. . . . . . . . 9
| |
| 36 | 34, 35 | syl 17 |
. . . . . . . 8
|
| 37 | fveq2 6191 |
. . . . . . . . . . 11
| |
| 38 | 37 | eqeq1d 2624 |
. . . . . . . . . 10
|
| 39 | 38 | riota2 6633 |
. . . . . . . . 9
|
| 40 | eqcom 2629 |
. . . . . . . . 9
| |
| 41 | 39, 40 | syl6bb 276 |
. . . . . . . 8
|
| 42 | 33, 36, 41 | syl2an2r 876 |
. . . . . . 7
|
| 43 | 32, 42 | mpbid 222 |
. . . . . 6
|
| 44 | scutval 31911 |
. . . . . . 7
| |
| 45 | 34, 44 | syl 17 |
. . . . . 6
|
| 46 | 43, 45 | eqtr4d 2659 |
. . . . 5
|
| 47 | 46 | ex 450 |
. . . 4
|
| 48 | 47 | necon3d 2815 |
. . 3
|
| 49 | 48 | 3impia 1261 |
. 2
|
| 50 | bdayelon 31892 |
. . 3
| |
| 51 | bdayelon 31892 |
. . 3
| |
| 52 | onelpss 5764 |
. . 3
| |
| 53 | 50, 51, 52 | mp2an 708 |
. 2
|
| 54 | 23, 49, 53 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1o 7560 df-2o 7561 df-no 31796 df-slt 31797 df-bday 31798 df-sslt 31897 df-scut 31899 |
| This theorem is referenced by: slerec 31923 |
| Copyright terms: Public domain | W3C validator |