HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shlej1 Structured version   Visualization version   Unicode version

Theorem shlej1 28219
Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 22-Jun-2004.) (Revised by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
shlej1  |-  ( ( ( A  e.  SH  /\  B  e.  SH  /\  C  e.  SH )  /\  A  C_  B )  ->  ( A  vH  C )  C_  ( B  vH  C ) )

Proof of Theorem shlej1
StepHypRef Expression
1 simpr 477 . . 3  |-  ( ( ( A  e.  SH  /\  B  e.  SH  /\  C  e.  SH )  /\  A  C_  B )  ->  A  C_  B
)
2 unss1 3782 . . . 4  |-  ( A 
C_  B  ->  ( A  u.  C )  C_  ( B  u.  C
) )
3 simpl1 1064 . . . . . . 7  |-  ( ( ( A  e.  SH  /\  B  e.  SH  /\  C  e.  SH )  /\  A  C_  B )  ->  A  e.  SH )
4 shss 28067 . . . . . . 7  |-  ( A  e.  SH  ->  A  C_ 
~H )
53, 4syl 17 . . . . . 6  |-  ( ( ( A  e.  SH  /\  B  e.  SH  /\  C  e.  SH )  /\  A  C_  B )  ->  A  C_  ~H )
6 simpl3 1066 . . . . . . 7  |-  ( ( ( A  e.  SH  /\  B  e.  SH  /\  C  e.  SH )  /\  A  C_  B )  ->  C  e.  SH )
7 shss 28067 . . . . . . 7  |-  ( C  e.  SH  ->  C  C_ 
~H )
86, 7syl 17 . . . . . 6  |-  ( ( ( A  e.  SH  /\  B  e.  SH  /\  C  e.  SH )  /\  A  C_  B )  ->  C  C_  ~H )
95, 8unssd 3789 . . . . 5  |-  ( ( ( A  e.  SH  /\  B  e.  SH  /\  C  e.  SH )  /\  A  C_  B )  ->  ( A  u.  C )  C_  ~H )
10 simpl2 1065 . . . . . . 7  |-  ( ( ( A  e.  SH  /\  B  e.  SH  /\  C  e.  SH )  /\  A  C_  B )  ->  B  e.  SH )
11 shss 28067 . . . . . . 7  |-  ( B  e.  SH  ->  B  C_ 
~H )
1210, 11syl 17 . . . . . 6  |-  ( ( ( A  e.  SH  /\  B  e.  SH  /\  C  e.  SH )  /\  A  C_  B )  ->  B  C_  ~H )
1312, 8unssd 3789 . . . . 5  |-  ( ( ( A  e.  SH  /\  B  e.  SH  /\  C  e.  SH )  /\  A  C_  B )  ->  ( B  u.  C )  C_  ~H )
14 occon2 28147 . . . . 5  |-  ( ( ( A  u.  C
)  C_  ~H  /\  ( B  u.  C )  C_ 
~H )  ->  (
( A  u.  C
)  C_  ( B  u.  C )  ->  ( _|_ `  ( _|_ `  ( A  u.  C )
) )  C_  ( _|_ `  ( _|_ `  ( B  u.  C )
) ) ) )
159, 13, 14syl2anc 693 . . . 4  |-  ( ( ( A  e.  SH  /\  B  e.  SH  /\  C  e.  SH )  /\  A  C_  B )  ->  ( ( A  u.  C )  C_  ( B  u.  C
)  ->  ( _|_ `  ( _|_ `  ( A  u.  C )
) )  C_  ( _|_ `  ( _|_ `  ( B  u.  C )
) ) ) )
162, 15syl5 34 . . 3  |-  ( ( ( A  e.  SH  /\  B  e.  SH  /\  C  e.  SH )  /\  A  C_  B )  ->  ( A  C_  B  ->  ( _|_ `  ( _|_ `  ( A  u.  C ) ) ) 
C_  ( _|_ `  ( _|_ `  ( B  u.  C ) ) ) ) )
171, 16mpd 15 . 2  |-  ( ( ( A  e.  SH  /\  B  e.  SH  /\  C  e.  SH )  /\  A  C_  B )  ->  ( _|_ `  ( _|_ `  ( A  u.  C ) ) ) 
C_  ( _|_ `  ( _|_ `  ( B  u.  C ) ) ) )
18 shjval 28210 . . 3  |-  ( ( A  e.  SH  /\  C  e.  SH )  ->  ( A  vH  C
)  =  ( _|_ `  ( _|_ `  ( A  u.  C )
) ) )
193, 6, 18syl2anc 693 . 2  |-  ( ( ( A  e.  SH  /\  B  e.  SH  /\  C  e.  SH )  /\  A  C_  B )  ->  ( A  vH  C )  =  ( _|_ `  ( _|_ `  ( A  u.  C
) ) ) )
20 shjval 28210 . . 3  |-  ( ( B  e.  SH  /\  C  e.  SH )  ->  ( B  vH  C
)  =  ( _|_ `  ( _|_ `  ( B  u.  C )
) ) )
2110, 6, 20syl2anc 693 . 2  |-  ( ( ( A  e.  SH  /\  B  e.  SH  /\  C  e.  SH )  /\  A  C_  B )  ->  ( B  vH  C )  =  ( _|_ `  ( _|_ `  ( B  u.  C
) ) ) )
2217, 19, 213sstr4d 3648 1  |-  ( ( ( A  e.  SH  /\  B  e.  SH  /\  C  e.  SH )  /\  A  C_  B )  ->  ( A  vH  C )  C_  ( B  vH  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    u. cun 3572    C_ wss 3574   ` cfv 5888  (class class class)co 6650   ~Hchil 27776   SHcsh 27785   _|_cort 27787    vH chj 27790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-hilex 27856  ax-hfvadd 27857  ax-hv0cl 27860  ax-hfvmul 27862  ax-hvmul0 27867  ax-hfi 27936  ax-his2 27940  ax-his3 27941
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sh 28064  df-oc 28109  df-chj 28169
This theorem is referenced by:  shlej2  28220  shlej1i  28237  chlej1  28369
  Copyright terms: Public domain W3C validator