Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimltmpt Structured version   Visualization version   Unicode version

Theorem smfpimltmpt 40955
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpimltmpt.x  |-  F/ x ph
smfpimltmpt.s  |-  ( ph  ->  S  e. SAlg )
smfpimltmpt.b  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
smfpimltmpt.f  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  (SMblFn `  S ) )
smfpimltmpt.r  |-  ( ph  ->  R  e.  RR )
Assertion
Ref Expression
smfpimltmpt  |-  ( ph  ->  { x  e.  A  |  B  <  R }  e.  ( St  A ) )
Distinct variable groups:    x, A    x, R
Allowed substitution hints:    ph( x)    B( x)    S( x)    V( x)

Proof of Theorem smfpimltmpt
StepHypRef Expression
1 nfmpt1 4747 . . 3  |-  F/_ x
( x  e.  A  |->  B )
2 smfpimltmpt.s . . 3  |-  ( ph  ->  S  e. SAlg )
3 smfpimltmpt.f . . 3  |-  ( ph  ->  ( x  e.  A  |->  B )  e.  (SMblFn `  S ) )
4 eqid 2622 . . 3  |-  dom  (
x  e.  A  |->  B )  =  dom  (
x  e.  A  |->  B )
5 smfpimltmpt.r . . 3  |-  ( ph  ->  R  e.  RR )
61, 2, 3, 4, 5smfpreimaltf 40945 . 2  |-  ( ph  ->  { x  e.  dom  ( x  e.  A  |->  B )  |  ( ( x  e.  A  |->  B ) `  x
)  <  R }  e.  ( St  dom  ( x  e.  A  |->  B ) ) )
7 smfpimltmpt.x . . . . . 6  |-  F/ x ph
8 eqid 2622 . . . . . 6  |-  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B )
9 smfpimltmpt.b . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  B  e.  V )
107, 8, 9dmmptdf 39417 . . . . 5  |-  ( ph  ->  dom  ( x  e.  A  |->  B )  =  A )
111nfdm 5367 . . . . . 6  |-  F/_ x dom  ( x  e.  A  |->  B )
12 nfcv 2764 . . . . . 6  |-  F/_ x A
1311, 12rabeqf 3190 . . . . 5  |-  ( dom  ( x  e.  A  |->  B )  =  A  ->  { x  e. 
dom  ( x  e.  A  |->  B )  |  ( ( x  e.  A  |->  B ) `  x )  <  R }  =  { x  e.  A  |  (
( x  e.  A  |->  B ) `  x
)  <  R }
)
1410, 13syl 17 . . . 4  |-  ( ph  ->  { x  e.  dom  ( x  e.  A  |->  B )  |  ( ( x  e.  A  |->  B ) `  x
)  <  R }  =  { x  e.  A  |  ( ( x  e.  A  |->  B ) `
 x )  < 
R } )
158a1i 11 . . . . . . 7  |-  ( ph  ->  ( x  e.  A  |->  B )  =  ( x  e.  A  |->  B ) )
1615, 9fvmpt2d 6293 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( x  e.  A  |->  B ) `  x
)  =  B )
1716breq1d 4663 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( ( x  e.  A  |->  B ) `  x )  <  R  <->  B  <  R ) )
187, 17rabbida 39274 . . . 4  |-  ( ph  ->  { x  e.  A  |  ( ( x  e.  A  |->  B ) `
 x )  < 
R }  =  {
x  e.  A  |  B  <  R } )
19 eqidd 2623 . . . 4  |-  ( ph  ->  { x  e.  A  |  B  <  R }  =  { x  e.  A  |  B  <  R }
)
2014, 18, 193eqtrrd 2661 . . 3  |-  ( ph  ->  { x  e.  A  |  B  <  R }  =  { x  e.  dom  ( x  e.  A  |->  B )  |  ( ( x  e.  A  |->  B ) `  x
)  <  R }
)
2110eqcomd 2628 . . . 4  |-  ( ph  ->  A  =  dom  (
x  e.  A  |->  B ) )
2221oveq2d 6666 . . 3  |-  ( ph  ->  ( St  A )  =  ( St 
dom  ( x  e.  A  |->  B ) ) )
2320, 22eleq12d 2695 . 2  |-  ( ph  ->  ( { x  e.  A  |  B  < 
R }  e.  ( St  A )  <->  { x  e.  dom  ( x  e.  A  |->  B )  |  ( ( x  e.  A  |->  B ) `  x )  <  R }  e.  ( St  dom  ( x  e.  A  |->  B ) ) ) )
246, 23mpbird 247 1  |-  ( ph  ->  { x  e.  A  |  B  <  R }  e.  ( St  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483   F/wnf 1708    e. wcel 1990   {crab 2916   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ` cfv 5888  (class class class)co 6650   RRcr 9935    < clt 10074   ↾t crest 16081  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ioo 12179  df-ico 12181  df-smblfn 40910
This theorem is referenced by:  smfaddlem2  40972  smfrec  40996
  Copyright terms: Public domain W3C validator