Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  snatpsubN Structured version   Visualization version   Unicode version

Theorem snatpsubN 35036
Description: The singleton of an atom is a projective subspace. (Contributed by NM, 9-Sep-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
snpsub.a  |-  A  =  ( Atoms `  K )
snpsub.s  |-  S  =  ( PSubSp `  K )
Assertion
Ref Expression
snatpsubN  |-  ( ( K  e.  AtLat  /\  P  e.  A )  ->  { P }  e.  S )

Proof of Theorem snatpsubN
Dummy variables  q  p  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snssi 4339 . . . . . 6  |-  ( P  e.  A  ->  { P }  C_  A )
21adantl 482 . . . . 5  |-  ( ( K  e.  AtLat  /\  P  e.  A )  ->  { P }  C_  A )
3 atllat 34587 . . . . . . . . . . . . . . 15  |-  ( K  e.  AtLat  ->  K  e.  Lat )
4 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( Base `  K )  =  (
Base `  K )
5 snpsub.a . . . . . . . . . . . . . . . 16  |-  A  =  ( Atoms `  K )
64, 5atbase 34576 . . . . . . . . . . . . . . 15  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
7 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( join `  K )  =  (
join `  K )
84, 7latjidm 17074 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K ) )  -> 
( P ( join `  K ) P )  =  P )
93, 6, 8syl2an 494 . . . . . . . . . . . . . 14  |-  ( ( K  e.  AtLat  /\  P  e.  A )  ->  ( P ( join `  K
) P )  =  P )
109adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  AtLat  /\  P  e.  A )  /\  r  e.  A
)  ->  ( P
( join `  K ) P )  =  P )
1110breq2d 4665 . . . . . . . . . . . 12  |-  ( ( ( K  e.  AtLat  /\  P  e.  A )  /\  r  e.  A
)  ->  ( r
( le `  K
) ( P (
join `  K ) P )  <->  r ( le `  K ) P ) )
12 eqid 2622 . . . . . . . . . . . . . . . 16  |-  ( le
`  K )  =  ( le `  K
)
1312, 5atcmp 34598 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  AtLat  /\  r  e.  A  /\  P  e.  A )  ->  (
r ( le `  K ) P  <->  r  =  P ) )
14133com23 1271 . . . . . . . . . . . . . 14  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  r  e.  A )  ->  (
r ( le `  K ) P  <->  r  =  P ) )
15143expa 1265 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  AtLat  /\  P  e.  A )  /\  r  e.  A
)  ->  ( r
( le `  K
) P  <->  r  =  P ) )
1615biimpd 219 . . . . . . . . . . . 12  |-  ( ( ( K  e.  AtLat  /\  P  e.  A )  /\  r  e.  A
)  ->  ( r
( le `  K
) P  ->  r  =  P ) )
1711, 16sylbid 230 . . . . . . . . . . 11  |-  ( ( ( K  e.  AtLat  /\  P  e.  A )  /\  r  e.  A
)  ->  ( r
( le `  K
) ( P (
join `  K ) P )  ->  r  =  P ) )
1817adantld 483 . . . . . . . . . 10  |-  ( ( ( K  e.  AtLat  /\  P  e.  A )  /\  r  e.  A
)  ->  ( (
( p  =  P  /\  q  =  P )  /\  r ( le `  K ) ( P ( join `  K ) P ) )  ->  r  =  P ) )
19 velsn 4193 . . . . . . . . . . . . 13  |-  ( p  e.  { P }  <->  p  =  P )
20 velsn 4193 . . . . . . . . . . . . 13  |-  ( q  e.  { P }  <->  q  =  P )
2119, 20anbi12i 733 . . . . . . . . . . . 12  |-  ( ( p  e.  { P }  /\  q  e.  { P } )  <->  ( p  =  P  /\  q  =  P ) )
2221anbi1i 731 . . . . . . . . . . 11  |-  ( ( ( p  e.  { P }  /\  q  e.  { P } )  /\  r ( le
`  K ) ( p ( join `  K
) q ) )  <-> 
( ( p  =  P  /\  q  =  P )  /\  r
( le `  K
) ( p (
join `  K )
q ) ) )
23 oveq12 6659 . . . . . . . . . . . . 13  |-  ( ( p  =  P  /\  q  =  P )  ->  ( p ( join `  K ) q )  =  ( P (
join `  K ) P ) )
2423breq2d 4665 . . . . . . . . . . . 12  |-  ( ( p  =  P  /\  q  =  P )  ->  ( r ( le
`  K ) ( p ( join `  K
) q )  <->  r ( le `  K ) ( P ( join `  K
) P ) ) )
2524pm5.32i 669 . . . . . . . . . . 11  |-  ( ( ( p  =  P  /\  q  =  P )  /\  r ( le `  K ) ( p ( join `  K ) q ) )  <->  ( ( p  =  P  /\  q  =  P )  /\  r
( le `  K
) ( P (
join `  K ) P ) ) )
2622, 25bitri 264 . . . . . . . . . 10  |-  ( ( ( p  e.  { P }  /\  q  e.  { P } )  /\  r ( le
`  K ) ( p ( join `  K
) q ) )  <-> 
( ( p  =  P  /\  q  =  P )  /\  r
( le `  K
) ( P (
join `  K ) P ) ) )
27 velsn 4193 . . . . . . . . . 10  |-  ( r  e.  { P }  <->  r  =  P )
2818, 26, 273imtr4g 285 . . . . . . . . 9  |-  ( ( ( K  e.  AtLat  /\  P  e.  A )  /\  r  e.  A
)  ->  ( (
( p  e.  { P }  /\  q  e.  { P } )  /\  r ( le
`  K ) ( p ( join `  K
) q ) )  ->  r  e.  { P } ) )
2928exp4b 632 . . . . . . . 8  |-  ( ( K  e.  AtLat  /\  P  e.  A )  ->  (
r  e.  A  -> 
( ( p  e. 
{ P }  /\  q  e.  { P } )  ->  (
r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  { P } ) ) ) )
3029com23 86 . . . . . . 7  |-  ( ( K  e.  AtLat  /\  P  e.  A )  ->  (
( p  e.  { P }  /\  q  e.  { P } )  ->  ( r  e.  A  ->  ( r
( le `  K
) ( p (
join `  K )
q )  ->  r  e.  { P } ) ) ) )
3130ralrimdv 2968 . . . . . 6  |-  ( ( K  e.  AtLat  /\  P  e.  A )  ->  (
( p  e.  { P }  /\  q  e.  { P } )  ->  A. r  e.  A  ( r ( le
`  K ) ( p ( join `  K
) q )  -> 
r  e.  { P } ) ) )
3231ralrimivv 2970 . . . . 5  |-  ( ( K  e.  AtLat  /\  P  e.  A )  ->  A. p  e.  { P } A. q  e.  { P } A. r  e.  A  ( r ( le
`  K ) ( p ( join `  K
) q )  -> 
r  e.  { P } ) )
332, 32jca 554 . . . 4  |-  ( ( K  e.  AtLat  /\  P  e.  A )  ->  ( { P }  C_  A  /\  A. p  e.  { P } A. q  e. 
{ P } A. r  e.  A  (
r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  { P } ) ) )
3433ex 450 . . 3  |-  ( K  e.  AtLat  ->  ( P  e.  A  ->  ( { P }  C_  A  /\  A. p  e.  { P } A. q  e. 
{ P } A. r  e.  A  (
r ( le `  K ) ( p ( join `  K
) q )  -> 
r  e.  { P } ) ) ) )
35 snpsub.s . . . 4  |-  S  =  ( PSubSp `  K )
3612, 7, 5, 35ispsubsp 35031 . . 3  |-  ( K  e.  AtLat  ->  ( { P }  e.  S  <->  ( { P }  C_  A  /\  A. p  e. 
{ P } A. q  e.  { P } A. r  e.  A  ( r ( le
`  K ) ( p ( join `  K
) q )  -> 
r  e.  { P } ) ) ) )
3734, 36sylibrd 249 . 2  |-  ( K  e.  AtLat  ->  ( P  e.  A  ->  { P }  e.  S )
)
3837imp 445 1  |-  ( ( K  e.  AtLat  /\  P  e.  A )  ->  { P }  e.  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   {csn 4177   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   Latclat 17045   Atomscatm 34550   AtLatcal 34551   PSubSpcpsubsp 34782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-lat 17046  df-covers 34553  df-ats 34554  df-atl 34585  df-psubsp 34789
This theorem is referenced by:  pointpsubN  35037  pclfinN  35186  pclfinclN  35236
  Copyright terms: Public domain W3C validator