| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sslttr | Structured version Visualization version Unicode version | ||
| Description: Transitive law for surreal set less than. (Contributed by Scott Fenton, 9-Dec-2021.) |
| Ref | Expression |
|---|---|
| sslttr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 3931 |
. . . 4
| |
| 2 | ssltex1 31901 |
. . . . . . . . 9
| |
| 3 | ssltex2 31902 |
. . . . . . . . 9
| |
| 4 | 2, 3 | anim12i 590 |
. . . . . . . 8
|
| 5 | 4 | adantl 482 |
. . . . . . 7
|
| 6 | ssltss1 31903 |
. . . . . . . . 9
| |
| 7 | 6 | ad2antrl 764 |
. . . . . . . 8
|
| 8 | ssltss2 31904 |
. . . . . . . . 9
| |
| 9 | 8 | ad2antll 765 |
. . . . . . . 8
|
| 10 | 7 | adantr 481 |
. . . . . . . . . . 11
|
| 11 | simprl 794 |
. . . . . . . . . . 11
| |
| 12 | 10, 11 | sseldd 3604 |
. . . . . . . . . 10
|
| 13 | ssltss1 31903 |
. . . . . . . . . . . . 13
| |
| 14 | 13 | ad2antll 765 |
. . . . . . . . . . . 12
|
| 15 | 14 | adantr 481 |
. . . . . . . . . . 11
|
| 16 | simpll 790 |
. . . . . . . . . . 11
| |
| 17 | 15, 16 | sseldd 3604 |
. . . . . . . . . 10
|
| 18 | 9 | adantr 481 |
. . . . . . . . . . 11
|
| 19 | simprr 796 |
. . . . . . . . . . 11
| |
| 20 | 18, 19 | sseldd 3604 |
. . . . . . . . . 10
|
| 21 | ssltsep 31905 |
. . . . . . . . . . . . . 14
| |
| 22 | 21 | ad2antrl 764 |
. . . . . . . . . . . . 13
|
| 23 | 22 | adantr 481 |
. . . . . . . . . . . 12
|
| 24 | rsp 2929 |
. . . . . . . . . . . 12
| |
| 25 | 23, 11, 24 | sylc 65 |
. . . . . . . . . . 11
|
| 26 | rsp 2929 |
. . . . . . . . . . 11
| |
| 27 | 25, 16, 26 | sylc 65 |
. . . . . . . . . 10
|
| 28 | ssltsep 31905 |
. . . . . . . . . . . . . 14
| |
| 29 | 28 | ad2antll 765 |
. . . . . . . . . . . . 13
|
| 30 | 29 | adantr 481 |
. . . . . . . . . . . 12
|
| 31 | rsp 2929 |
. . . . . . . . . . . 12
| |
| 32 | 30, 16, 31 | sylc 65 |
. . . . . . . . . . 11
|
| 33 | rsp 2929 |
. . . . . . . . . . 11
| |
| 34 | 32, 19, 33 | sylc 65 |
. . . . . . . . . 10
|
| 35 | 12, 17, 20, 27, 34 | slttrd 31884 |
. . . . . . . . 9
|
| 36 | 35 | ralrimivva 2971 |
. . . . . . . 8
|
| 37 | 7, 9, 36 | 3jca 1242 |
. . . . . . 7
|
| 38 | brsslt 31900 |
. . . . . . 7
| |
| 39 | 5, 37, 38 | sylanbrc 698 |
. . . . . 6
|
| 40 | 39 | ex 450 |
. . . . 5
|
| 41 | 40 | exlimiv 1858 |
. . . 4
|
| 42 | 1, 41 | sylbi 207 |
. . 3
|
| 43 | 42 | com12 32 |
. 2
|
| 44 | 43 | 3impia 1261 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-1o 7560 df-2o 7561 df-no 31796 df-slt 31797 df-sslt 31897 |
| This theorem is referenced by: scutun12 31917 scutbdaylt 31922 |
| Copyright terms: Public domain | W3C validator |