Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk1indlem1 Structured version   Visualization version   Unicode version

Theorem clsk1indlem1 38343
Description: The ansatz closure function  ( r  e. 
~P 3o  |->  if ( r  =  { (/) } ,  { (/) ,  1o } ,  r )
) does not have the K1 property of isotony. (Contributed by RP, 6-Jul-2021.)
Hypothesis
Ref Expression
clsk1indlem.k  |-  K  =  ( r  e.  ~P 3o  |->  if ( r  =  { (/) } ,  { (/) ,  1o } ,  r ) )
Assertion
Ref Expression
clsk1indlem1  |-  E. s  e.  ~P  3o E. t  e.  ~P  3o ( s 
C_  t  /\  -.  ( K `  s ) 
C_  ( K `  t ) )
Distinct variable groups:    K, s,
t    s, r, t
Allowed substitution hint:    K( r)

Proof of Theorem clsk1indlem1
StepHypRef Expression
1 tpex 6957 . . . . . 6  |-  { (/) ,  1o ,  2o }  e.  _V
21a1i 11 . . . . 5  |-  ( T. 
->  { (/) ,  1o ,  2o }  e.  _V )
3 snsstp1 4347 . . . . . 6  |-  { (/) } 
C_  { (/) ,  1o ,  2o }
43a1i 11 . . . . 5  |-  ( T. 
->  { (/) }  C_  { (/) ,  1o ,  2o }
)
52, 4sselpwd 4807 . . . 4  |-  ( T. 
->  { (/) }  e.  ~P { (/) ,  1o ,  2o } )
65trud 1493 . . 3  |-  { (/) }  e.  ~P { (/) ,  1o ,  2o }
7 df3o2 38322 . . . 4  |-  3o  =  { (/) ,  1o ,  2o }
87pweqi 4162 . . 3  |-  ~P 3o  =  ~P { (/) ,  1o ,  2o }
96, 8eleqtrri 2700 . 2  |-  { (/) }  e.  ~P 3o
10 0ex 4790 . . . . . . . 8  |-  (/)  e.  _V
1110snss 4316 . . . . . . 7  |-  ( (/)  e.  { (/) ,  1o ,  2o }  <->  { (/) }  C_  { (/) ,  1o ,  2o }
)
124, 11sylibr 224 . . . . . 6  |-  ( T. 
->  (/)  e.  { (/) ,  1o ,  2o }
)
13 snsstp3 4349 . . . . . . . 8  |-  { 2o }  C_  { (/) ,  1o ,  2o }
1413a1i 11 . . . . . . 7  |-  ( T. 
->  { 2o }  C_  {
(/) ,  1o ,  2o } )
15 2on 7568 . . . . . . . . 9  |-  2o  e.  On
1615elexi 3213 . . . . . . . 8  |-  2o  e.  _V
1716snss 4316 . . . . . . 7  |-  ( 2o  e.  { (/) ,  1o ,  2o }  <->  { 2o }  C_  { (/) ,  1o ,  2o } )
1814, 17sylibr 224 . . . . . 6  |-  ( T. 
->  2o  e.  { (/) ,  1o ,  2o }
)
1912, 18prssd 4354 . . . . 5  |-  ( T. 
->  { (/) ,  2o }  C_ 
{ (/) ,  1o ,  2o } )
202, 19sselpwd 4807 . . . 4  |-  ( T. 
->  { (/) ,  2o }  e.  ~P { (/) ,  1o ,  2o } )
2120trud 1493 . . 3  |-  { (/) ,  2o }  e.  ~P { (/) ,  1o ,  2o }
2221, 8eleqtrri 2700 . 2  |-  { (/) ,  2o }  e.  ~P 3o
23 simpl 473 . . 3  |-  ( ( { (/) }  e.  ~P 3o  /\  { (/) ,  2o }  e.  ~P 3o )  ->  { (/) }  e.  ~P 3o )
24 sseq1 3626 . . . . . 6  |-  ( s  =  { (/) }  ->  ( s  C_  t  <->  { (/) }  C_  t ) )
25 fveq2 6191 . . . . . . . 8  |-  ( s  =  { (/) }  ->  ( K `  s )  =  ( K `  { (/) } ) )
2625sseq1d 3632 . . . . . . 7  |-  ( s  =  { (/) }  ->  ( ( K `  s
)  C_  ( K `  t )  <->  ( K `  { (/) } )  C_  ( K `  t ) ) )
2726notbid 308 . . . . . 6  |-  ( s  =  { (/) }  ->  ( -.  ( K `  s )  C_  ( K `  t )  <->  -.  ( K `  { (/)
} )  C_  ( K `  t )
) )
2824, 27anbi12d 747 . . . . 5  |-  ( s  =  { (/) }  ->  ( ( s  C_  t  /\  -.  ( K `  s )  C_  ( K `  t )
)  <->  ( { (/) } 
C_  t  /\  -.  ( K `  { (/) } )  C_  ( K `  t ) ) ) )
2928rexbidv 3052 . . . 4  |-  ( s  =  { (/) }  ->  ( E. t  e.  ~P  3o ( s  C_  t  /\  -.  ( K `  s )  C_  ( K `  t )
)  <->  E. t  e.  ~P  3o ( { (/) }  C_  t  /\  -.  ( K `
 { (/) } ) 
C_  ( K `  t ) ) ) )
3029adantl 482 . . 3  |-  ( ( ( { (/) }  e.  ~P 3o  /\  { (/) ,  2o }  e.  ~P 3o )  /\  s  =  { (/) } )  -> 
( E. t  e. 
~P  3o ( s 
C_  t  /\  -.  ( K `  s ) 
C_  ( K `  t ) )  <->  E. t  e.  ~P  3o ( {
(/) }  C_  t  /\  -.  ( K `  { (/)
} )  C_  ( K `  t )
) ) )
31 simpr 477 . . . 4  |-  ( ( { (/) }  e.  ~P 3o  /\  { (/) ,  2o }  e.  ~P 3o )  ->  { (/) ,  2o }  e.  ~P 3o )
32 fveq2 6191 . . . . . . . 8  |-  ( t  =  { (/) ,  2o }  ->  ( K `  t )  =  ( K `  { (/) ,  2o } ) )
3332sseq2d 3633 . . . . . . 7  |-  ( t  =  { (/) ,  2o }  ->  ( ( K `
 { (/) } ) 
C_  ( K `  t )  <->  ( K `  { (/) } )  C_  ( K `  { (/) ,  2o } ) ) )
3433notbid 308 . . . . . 6  |-  ( t  =  { (/) ,  2o }  ->  ( -.  ( K `  { (/) } ) 
C_  ( K `  t )  <->  -.  ( K `  { (/) } ) 
C_  ( K `  { (/) ,  2o }
) ) )
3534cleq2lem 37914 . . . . 5  |-  ( t  =  { (/) ,  2o }  ->  ( ( {
(/) }  C_  t  /\  -.  ( K `  { (/)
} )  C_  ( K `  t )
)  <->  ( { (/) } 
C_  { (/) ,  2o }  /\  -.  ( K `
 { (/) } ) 
C_  ( K `  { (/) ,  2o }
) ) ) )
3635adantl 482 . . . 4  |-  ( ( ( { (/) }  e.  ~P 3o  /\  { (/) ,  2o }  e.  ~P 3o )  /\  t  =  { (/) ,  2o }
)  ->  ( ( { (/) }  C_  t  /\  -.  ( K `  { (/) } )  C_  ( K `  t ) )  <->  ( { (/) } 
C_  { (/) ,  2o }  /\  -.  ( K `
 { (/) } ) 
C_  ( K `  { (/) ,  2o }
) ) ) )
37 1on 7567 . . . . . . . . 9  |-  1o  e.  On
3837elexi 3213 . . . . . . . 8  |-  1o  e.  _V
3938prid2 4298 . . . . . . 7  |-  1o  e.  {
(/) ,  1o }
40 iftrue 4092 . . . . . . . . 9  |-  ( r  =  { (/) }  ->  if ( r  =  { (/)
} ,  { (/) ,  1o } ,  r )  =  { (/) ,  1o } )
41 clsk1indlem.k . . . . . . . . 9  |-  K  =  ( r  e.  ~P 3o  |->  if ( r  =  { (/) } ,  { (/) ,  1o } ,  r ) )
42 prex 4909 . . . . . . . . 9  |-  { (/) ,  1o }  e.  _V
4340, 41, 42fvmpt 6282 . . . . . . . 8  |-  ( {
(/) }  e.  ~P 3o  ->  ( K `  { (/) } )  =  { (/) ,  1o }
)
4443adantr 481 . . . . . . 7  |-  ( ( { (/) }  e.  ~P 3o  /\  { (/) ,  2o }  e.  ~P 3o )  ->  ( K `  { (/) } )  =  { (/) ,  1o }
)
4539, 44syl5eleqr 2708 . . . . . 6  |-  ( ( { (/) }  e.  ~P 3o  /\  { (/) ,  2o }  e.  ~P 3o )  ->  1o  e.  ( K `  { (/) } ) )
46 1n0 7575 . . . . . . . . . . 11  |-  1o  =/=  (/)
4746neii 2796 . . . . . . . . . 10  |-  -.  1o  =  (/)
48 eqcom 2629 . . . . . . . . . . . 12  |-  ( 1o  =  2o  <->  2o  =  1o )
49 df-2o 7561 . . . . . . . . . . . . 13  |-  2o  =  suc  1o
50 df-1o 7560 . . . . . . . . . . . . 13  |-  1o  =  suc  (/)
5149, 50eqeq12i 2636 . . . . . . . . . . . 12  |-  ( 2o  =  1o  <->  suc  1o  =  suc  (/) )
52 suc11reg 8516 . . . . . . . . . . . 12  |-  ( suc 
1o  =  suc  (/)  <->  1o  =  (/) )
5348, 51, 523bitri 286 . . . . . . . . . . 11  |-  ( 1o  =  2o  <->  1o  =  (/) )
5446, 53nemtbir 2889 . . . . . . . . . 10  |-  -.  1o  =  2o
5547, 54pm3.2ni 899 . . . . . . . . 9  |-  -.  ( 1o  =  (/)  \/  1o  =  2o )
56 elpri 4197 . . . . . . . . 9  |-  ( 1o  e.  { (/) ,  2o }  ->  ( 1o  =  (/) 
\/  1o  =  2o ) )
5755, 56mto 188 . . . . . . . 8  |-  -.  1o  e.  { (/) ,  2o }
5857a1i 11 . . . . . . 7  |-  ( ( { (/) }  e.  ~P 3o  /\  { (/) ,  2o }  e.  ~P 3o )  ->  -.  1o  e.  {
(/) ,  2o } )
59 eqeq1 2626 . . . . . . . . . . 11  |-  ( r  =  { (/) ,  2o }  ->  ( r  =  { (/) }  <->  { (/) ,  2o }  =  { (/) } ) )
60 id 22 . . . . . . . . . . 11  |-  ( r  =  { (/) ,  2o }  ->  r  =  { (/)
,  2o } )
6159, 60ifbieq2d 4111 . . . . . . . . . 10  |-  ( r  =  { (/) ,  2o }  ->  if ( r  =  { (/) } ,  { (/) ,  1o } ,  r )  =  if ( { (/) ,  2o }  =  { (/)
} ,  { (/) ,  1o } ,  { (/)
,  2o } ) )
6216prid2 4298 . . . . . . . . . . . 12  |-  2o  e.  {
(/) ,  2o }
63 2on0 7569 . . . . . . . . . . . . 13  |-  2o  =/=  (/)
64 nelsn 4212 . . . . . . . . . . . . 13  |-  ( 2o  =/=  (/)  ->  -.  2o  e.  { (/) } )
6563, 64ax-mp 5 . . . . . . . . . . . 12  |-  -.  2o  e.  { (/) }
66 nelneq2 2726 . . . . . . . . . . . 12  |-  ( ( 2o  e.  { (/) ,  2o }  /\  -.  2o  e.  { (/) } )  ->  -.  { (/) ,  2o }  =  { (/) } )
6762, 65, 66mp2an 708 . . . . . . . . . . 11  |-  -.  { (/)
,  2o }  =  { (/) }
6867iffalsei 4096 . . . . . . . . . 10  |-  if ( { (/) ,  2o }  =  { (/) } ,  { (/)
,  1o } ,  { (/) ,  2o }
)  =  { (/) ,  2o }
6961, 68syl6eq 2672 . . . . . . . . 9  |-  ( r  =  { (/) ,  2o }  ->  if ( r  =  { (/) } ,  { (/) ,  1o } ,  r )  =  { (/) ,  2o }
)
70 prex 4909 . . . . . . . . 9  |-  { (/) ,  2o }  e.  _V
7169, 41, 70fvmpt 6282 . . . . . . . 8  |-  ( {
(/) ,  2o }  e.  ~P 3o  ->  ( K `  { (/) ,  2o }
)  =  { (/) ,  2o } )
7271adantl 482 . . . . . . 7  |-  ( ( { (/) }  e.  ~P 3o  /\  { (/) ,  2o }  e.  ~P 3o )  ->  ( K `  { (/) ,  2o }
)  =  { (/) ,  2o } )
7358, 72neleqtrrd 2723 . . . . . 6  |-  ( ( { (/) }  e.  ~P 3o  /\  { (/) ,  2o }  e.  ~P 3o )  ->  -.  1o  e.  ( K `  { (/) ,  2o } ) )
74 nelss 3664 . . . . . 6  |-  ( ( 1o  e.  ( K `
 { (/) } )  /\  -.  1o  e.  ( K `  { (/) ,  2o } ) )  ->  -.  ( K `  { (/) } )  C_  ( K `  { (/) ,  2o } ) )
7545, 73, 74syl2anc 693 . . . . 5  |-  ( ( { (/) }  e.  ~P 3o  /\  { (/) ,  2o }  e.  ~P 3o )  ->  -.  ( K `  { (/) } )  C_  ( K `  { (/) ,  2o } ) )
76 snsspr1 4345 . . . . 5  |-  { (/) } 
C_  { (/) ,  2o }
7775, 76jctil 560 . . . 4  |-  ( ( { (/) }  e.  ~P 3o  /\  { (/) ,  2o }  e.  ~P 3o )  ->  ( { (/) } 
C_  { (/) ,  2o }  /\  -.  ( K `
 { (/) } ) 
C_  ( K `  { (/) ,  2o }
) ) )
7831, 36, 77rspcedvd 3317 . . 3  |-  ( ( { (/) }  e.  ~P 3o  /\  { (/) ,  2o }  e.  ~P 3o )  ->  E. t  e.  ~P  3o ( { (/) }  C_  t  /\  -.  ( K `
 { (/) } ) 
C_  ( K `  t ) ) )
7923, 30, 78rspcedvd 3317 . 2  |-  ( ( { (/) }  e.  ~P 3o  /\  { (/) ,  2o }  e.  ~P 3o )  ->  E. s  e.  ~P  3o E. t  e.  ~P  3o ( s  C_  t  /\  -.  ( K `  s )  C_  ( K `  t )
) )
809, 22, 79mp2an 708 1  |-  E. s  e.  ~P  3o E. t  e.  ~P  3o ( s 
C_  t  /\  -.  ( K `  s ) 
C_  ( K `  t ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483   T. wtru 1484    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ifcif 4086   ~Pcpw 4158   {csn 4177   {cpr 4179   {ctp 4181    |-> cmpt 4729   Oncon0 5723   suc csuc 5725   ` cfv 5888   1oc1o 7553   2oc2o 7554   3oc3o 7555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fv 5896  df-1o 7560  df-2o 7561  df-3o 7562
This theorem is referenced by:  clsk1independent  38344
  Copyright terms: Public domain W3C validator