| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > clsk1indlem1 | Structured version Visualization version Unicode version | ||
| Description: The ansatz closure
function
|
| Ref | Expression |
|---|---|
| clsk1indlem.k |
|
| Ref | Expression |
|---|---|
| clsk1indlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpex 6957 |
. . . . . 6
| |
| 2 | 1 | a1i 11 |
. . . . 5
|
| 3 | snsstp1 4347 |
. . . . . 6
| |
| 4 | 3 | a1i 11 |
. . . . 5
|
| 5 | 2, 4 | sselpwd 4807 |
. . . 4
|
| 6 | 5 | trud 1493 |
. . 3
|
| 7 | df3o2 38322 |
. . . 4
| |
| 8 | 7 | pweqi 4162 |
. . 3
|
| 9 | 6, 8 | eleqtrri 2700 |
. 2
|
| 10 | 0ex 4790 |
. . . . . . . 8
| |
| 11 | 10 | snss 4316 |
. . . . . . 7
|
| 12 | 4, 11 | sylibr 224 |
. . . . . 6
|
| 13 | snsstp3 4349 |
. . . . . . . 8
| |
| 14 | 13 | a1i 11 |
. . . . . . 7
|
| 15 | 2on 7568 |
. . . . . . . . 9
| |
| 16 | 15 | elexi 3213 |
. . . . . . . 8
|
| 17 | 16 | snss 4316 |
. . . . . . 7
|
| 18 | 14, 17 | sylibr 224 |
. . . . . 6
|
| 19 | 12, 18 | prssd 4354 |
. . . . 5
|
| 20 | 2, 19 | sselpwd 4807 |
. . . 4
|
| 21 | 20 | trud 1493 |
. . 3
|
| 22 | 21, 8 | eleqtrri 2700 |
. 2
|
| 23 | simpl 473 |
. . 3
| |
| 24 | sseq1 3626 |
. . . . . 6
| |
| 25 | fveq2 6191 |
. . . . . . . 8
| |
| 26 | 25 | sseq1d 3632 |
. . . . . . 7
|
| 27 | 26 | notbid 308 |
. . . . . 6
|
| 28 | 24, 27 | anbi12d 747 |
. . . . 5
|
| 29 | 28 | rexbidv 3052 |
. . . 4
|
| 30 | 29 | adantl 482 |
. . 3
|
| 31 | simpr 477 |
. . . 4
| |
| 32 | fveq2 6191 |
. . . . . . . 8
| |
| 33 | 32 | sseq2d 3633 |
. . . . . . 7
|
| 34 | 33 | notbid 308 |
. . . . . 6
|
| 35 | 34 | cleq2lem 37914 |
. . . . 5
|
| 36 | 35 | adantl 482 |
. . . 4
|
| 37 | 1on 7567 |
. . . . . . . . 9
| |
| 38 | 37 | elexi 3213 |
. . . . . . . 8
|
| 39 | 38 | prid2 4298 |
. . . . . . 7
|
| 40 | iftrue 4092 |
. . . . . . . . 9
| |
| 41 | clsk1indlem.k |
. . . . . . . . 9
| |
| 42 | prex 4909 |
. . . . . . . . 9
| |
| 43 | 40, 41, 42 | fvmpt 6282 |
. . . . . . . 8
|
| 44 | 43 | adantr 481 |
. . . . . . 7
|
| 45 | 39, 44 | syl5eleqr 2708 |
. . . . . 6
|
| 46 | 1n0 7575 |
. . . . . . . . . . 11
| |
| 47 | 46 | neii 2796 |
. . . . . . . . . 10
|
| 48 | eqcom 2629 |
. . . . . . . . . . . 12
| |
| 49 | df-2o 7561 |
. . . . . . . . . . . . 13
| |
| 50 | df-1o 7560 |
. . . . . . . . . . . . 13
| |
| 51 | 49, 50 | eqeq12i 2636 |
. . . . . . . . . . . 12
|
| 52 | suc11reg 8516 |
. . . . . . . . . . . 12
| |
| 53 | 48, 51, 52 | 3bitri 286 |
. . . . . . . . . . 11
|
| 54 | 46, 53 | nemtbir 2889 |
. . . . . . . . . 10
|
| 55 | 47, 54 | pm3.2ni 899 |
. . . . . . . . 9
|
| 56 | elpri 4197 |
. . . . . . . . 9
| |
| 57 | 55, 56 | mto 188 |
. . . . . . . 8
|
| 58 | 57 | a1i 11 |
. . . . . . 7
|
| 59 | eqeq1 2626 |
. . . . . . . . . . 11
| |
| 60 | id 22 |
. . . . . . . . . . 11
| |
| 61 | 59, 60 | ifbieq2d 4111 |
. . . . . . . . . 10
|
| 62 | 16 | prid2 4298 |
. . . . . . . . . . . 12
|
| 63 | 2on0 7569 |
. . . . . . . . . . . . 13
| |
| 64 | nelsn 4212 |
. . . . . . . . . . . . 13
| |
| 65 | 63, 64 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 66 | nelneq2 2726 |
. . . . . . . . . . . 12
| |
| 67 | 62, 65, 66 | mp2an 708 |
. . . . . . . . . . 11
|
| 68 | 67 | iffalsei 4096 |
. . . . . . . . . 10
|
| 69 | 61, 68 | syl6eq 2672 |
. . . . . . . . 9
|
| 70 | prex 4909 |
. . . . . . . . 9
| |
| 71 | 69, 41, 70 | fvmpt 6282 |
. . . . . . . 8
|
| 72 | 71 | adantl 482 |
. . . . . . 7
|
| 73 | 58, 72 | neleqtrrd 2723 |
. . . . . 6
|
| 74 | nelss 3664 |
. . . . . 6
| |
| 75 | 45, 73, 74 | syl2anc 693 |
. . . . 5
|
| 76 | snsspr1 4345 |
. . . . 5
| |
| 77 | 75, 76 | jctil 560 |
. . . 4
|
| 78 | 31, 36, 77 | rspcedvd 3317 |
. . 3
|
| 79 | 23, 30, 78 | rspcedvd 3317 |
. 2
|
| 80 | 9, 22, 79 | mp2an 708 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-ord 5726 df-on 5727 df-suc 5729 df-iota 5851 df-fun 5890 df-fv 5896 df-1o 7560 df-2o 7561 df-3o 7562 |
| This theorem is referenced by: clsk1independent 38344 |
| Copyright terms: Public domain | W3C validator |