| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > swrdval | Structured version Visualization version Unicode version | ||
| Description: Value of a subword. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| swrdval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-substr 13303 |
. . 3
| |
| 2 | 1 | a1i 11 |
. 2
|
| 3 | simprl 794 |
. . 3
| |
| 4 | fveq2 6191 |
. . . . 5
| |
| 5 | 4 | adantl 482 |
. . . 4
|
| 6 | op1stg 7180 |
. . . . 5
| |
| 7 | 6 | 3adant1 1079 |
. . . 4
|
| 8 | 5, 7 | sylan9eqr 2678 |
. . 3
|
| 9 | fveq2 6191 |
. . . . 5
| |
| 10 | 9 | adantl 482 |
. . . 4
|
| 11 | op2ndg 7181 |
. . . . 5
| |
| 12 | 11 | 3adant1 1079 |
. . . 4
|
| 13 | 10, 12 | sylan9eqr 2678 |
. . 3
|
| 14 | simp2 1062 |
. . . . . 6
| |
| 15 | simp3 1063 |
. . . . . 6
| |
| 16 | 14, 15 | oveq12d 6668 |
. . . . 5
|
| 17 | simp1 1061 |
. . . . . 6
| |
| 18 | 17 | dmeqd 5326 |
. . . . 5
|
| 19 | 16, 18 | sseq12d 3634 |
. . . 4
|
| 20 | 15, 14 | oveq12d 6668 |
. . . . . 6
|
| 21 | 20 | oveq2d 6666 |
. . . . 5
|
| 22 | 14 | oveq2d 6666 |
. . . . . 6
|
| 23 | 17, 22 | fveq12d 6197 |
. . . . 5
|
| 24 | 21, 23 | mpteq12dv 4733 |
. . . 4
|
| 25 | 19, 24 | ifbieq1d 4109 |
. . 3
|
| 26 | 3, 8, 13, 25 | syl3anc 1326 |
. 2
|
| 27 | elex 3212 |
. . 3
| |
| 28 | 27 | 3ad2ant1 1082 |
. 2
|
| 29 | opelxpi 5148 |
. . 3
| |
| 30 | 29 | 3adant1 1079 |
. 2
|
| 31 | ovex 6678 |
. . . . 5
| |
| 32 | 31 | mptex 6486 |
. . . 4
|
| 33 | 0ex 4790 |
. . . 4
| |
| 34 | 32, 33 | ifex 4156 |
. . 3
|
| 35 | 34 | a1i 11 |
. 2
|
| 36 | 2, 26, 28, 30, 35 | ovmpt2d 6788 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-substr 13303 |
| This theorem is referenced by: swrd00 13418 swrdcl 13419 swrdval2 13420 swrdlend 13431 swrdnd 13432 swrdnd2 13433 swrd0 13434 repswswrd 13531 |
| Copyright terms: Public domain | W3C validator |