MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrd00 Structured version   Visualization version   Unicode version

Theorem swrd00 13418
Description: A zero length substring. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Assertion
Ref Expression
swrd00  |-  ( S substr  <. X ,  X >. )  =  (/)

Proof of Theorem swrd00
Dummy variables  s 
b  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelxp 5146 . . . 4  |-  ( <. S ,  <. X ,  X >. >.  e.  ( _V 
X.  ( ZZ  X.  ZZ ) )  <->  ( S  e.  _V  /\  <. X ,  X >.  e.  ( ZZ 
X.  ZZ ) ) )
2 opelxp 5146 . . . . 5  |-  ( <. X ,  X >.  e.  ( ZZ  X.  ZZ ) 
<->  ( X  e.  ZZ  /\  X  e.  ZZ ) )
3 swrdval 13417 . . . . . . 7  |-  ( ( S  e.  _V  /\  X  e.  ZZ  /\  X  e.  ZZ )  ->  ( S substr  <. X ,  X >. )  =  if ( ( X..^ X ) 
C_  dom  S , 
( x  e.  ( 0..^ ( X  -  X ) )  |->  ( S `  ( x  +  X ) ) ) ,  (/) ) )
4 fzo0 12492 . . . . . . . . . 10  |-  ( X..^ X )  =  (/)
5 0ss 3972 . . . . . . . . . 10  |-  (/)  C_  dom  S
64, 5eqsstri 3635 . . . . . . . . 9  |-  ( X..^ X )  C_  dom  S
76iftruei 4093 . . . . . . . 8  |-  if ( ( X..^ X ) 
C_  dom  S , 
( x  e.  ( 0..^ ( X  -  X ) )  |->  ( S `  ( x  +  X ) ) ) ,  (/) )  =  ( x  e.  ( 0..^ ( X  -  X ) )  |->  ( S `  ( x  +  X ) ) )
8 zcn 11382 . . . . . . . . . . . . . 14  |-  ( X  e.  ZZ  ->  X  e.  CC )
98subidd 10380 . . . . . . . . . . . . 13  |-  ( X  e.  ZZ  ->  ( X  -  X )  =  0 )
109oveq2d 6666 . . . . . . . . . . . 12  |-  ( X  e.  ZZ  ->  (
0..^ ( X  -  X ) )  =  ( 0..^ 0 ) )
11103ad2ant2 1083 . . . . . . . . . . 11  |-  ( ( S  e.  _V  /\  X  e.  ZZ  /\  X  e.  ZZ )  ->  (
0..^ ( X  -  X ) )  =  ( 0..^ 0 ) )
12 fzo0 12492 . . . . . . . . . . 11  |-  ( 0..^ 0 )  =  (/)
1311, 12syl6eq 2672 . . . . . . . . . 10  |-  ( ( S  e.  _V  /\  X  e.  ZZ  /\  X  e.  ZZ )  ->  (
0..^ ( X  -  X ) )  =  (/) )
1413mpteq1d 4738 . . . . . . . . 9  |-  ( ( S  e.  _V  /\  X  e.  ZZ  /\  X  e.  ZZ )  ->  (
x  e.  ( 0..^ ( X  -  X
) )  |->  ( S `
 ( x  +  X ) ) )  =  ( x  e.  (/)  |->  ( S `  ( x  +  X
) ) ) )
15 mpt0 6021 . . . . . . . . 9  |-  ( x  e.  (/)  |->  ( S `  ( x  +  X
) ) )  =  (/)
1614, 15syl6eq 2672 . . . . . . . 8  |-  ( ( S  e.  _V  /\  X  e.  ZZ  /\  X  e.  ZZ )  ->  (
x  e.  ( 0..^ ( X  -  X
) )  |->  ( S `
 ( x  +  X ) ) )  =  (/) )
177, 16syl5eq 2668 . . . . . . 7  |-  ( ( S  e.  _V  /\  X  e.  ZZ  /\  X  e.  ZZ )  ->  if ( ( X..^ X
)  C_  dom  S , 
( x  e.  ( 0..^ ( X  -  X ) )  |->  ( S `  ( x  +  X ) ) ) ,  (/) )  =  (/) )
183, 17eqtrd 2656 . . . . . 6  |-  ( ( S  e.  _V  /\  X  e.  ZZ  /\  X  e.  ZZ )  ->  ( S substr  <. X ,  X >. )  =  (/) )
19183expb 1266 . . . . 5  |-  ( ( S  e.  _V  /\  ( X  e.  ZZ  /\  X  e.  ZZ ) )  ->  ( S substr  <. X ,  X >. )  =  (/) )
202, 19sylan2b 492 . . . 4  |-  ( ( S  e.  _V  /\  <. X ,  X >.  e.  ( ZZ  X.  ZZ ) )  ->  ( S substr  <. X ,  X >. )  =  (/) )
211, 20sylbi 207 . . 3  |-  ( <. S ,  <. X ,  X >. >.  e.  ( _V 
X.  ( ZZ  X.  ZZ ) )  ->  ( S substr  <. X ,  X >. )  =  (/) )
22 df-substr 13303 . . . 4  |- substr  =  ( s  e.  _V , 
b  e.  ( ZZ 
X.  ZZ )  |->  if ( ( ( 1st `  b )..^ ( 2nd `  b ) )  C_  dom  s ,  ( x  e.  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) ) 
|->  ( s `  (
x  +  ( 1st `  b ) ) ) ) ,  (/) ) )
23 ovex 6678 . . . . . 6  |-  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) )  e.  _V
2423mptex 6486 . . . . 5  |-  ( x  e.  ( 0..^ ( ( 2nd `  b
)  -  ( 1st `  b ) ) ) 
|->  ( s `  (
x  +  ( 1st `  b ) ) ) )  e.  _V
25 0ex 4790 . . . . 5  |-  (/)  e.  _V
2624, 25ifex 4156 . . . 4  |-  if ( ( ( 1st `  b
)..^ ( 2nd `  b
) )  C_  dom  s ,  ( x  e.  ( 0..^ ( ( 2nd `  b )  -  ( 1st `  b
) ) )  |->  ( s `  ( x  +  ( 1st `  b
) ) ) ) ,  (/) )  e.  _V
2722, 26dmmpt2 7240 . . 3  |-  dom substr  =  ( _V  X.  ( ZZ 
X.  ZZ ) )
2821, 27eleq2s 2719 . 2  |-  ( <. S ,  <. X ,  X >. >.  e.  dom substr  ->  ( S substr  <. X ,  X >. )  =  (/) )
29 df-ov 6653 . . 3  |-  ( S substr  <. X ,  X >. )  =  ( substr  `  <. S ,  <. X ,  X >. >. )
30 ndmfv 6218 . . 3  |-  ( -. 
<. S ,  <. X ,  X >. >.  e.  dom substr  ->  ( substr  ` 
<. S ,  <. X ,  X >. >. )  =  (/) )
3129, 30syl5eq 2668 . 2  |-  ( -. 
<. S ,  <. X ,  X >. >.  e.  dom substr  ->  ( S substr  <. X ,  X >. )  =  (/) )
3228, 31pm2.61i 176 1  |-  ( S substr  <. X ,  X >. )  =  (/)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ifcif 4086   <.cop 4183    |-> cmpt 4729    X. cxp 5112   dom cdm 5114   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   0cc0 9936    + caddc 9939    - cmin 10266   ZZcz 11377  ..^cfzo 12465   substr csubstr 13295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-substr 13303
This theorem is referenced by:  swrdccatin1  13483  swrdccat3blem  13495  cshw0  13540  pfx00  41384
  Copyright terms: Public domain W3C validator