MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfr3 Structured version   Visualization version   Unicode version

Theorem tfr3 7495
Description: Principle of Transfinite Recursion, part 3 of 3. Theorem 7.41(3) of [TakeutiZaring] p. 47. Finally, we show that  F is unique. We do this by showing that any class  B with the same properties of  F that we showed in parts 1 and 2 is identical to  F. (Contributed by NM, 18-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypothesis
Ref Expression
tfr.1  |-  F  = recs ( G )
Assertion
Ref Expression
tfr3  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  B  =  F )
Distinct variable groups:    x, B    x, F    x, G

Proof of Theorem tfr3
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nfv 1843 . . . 4  |-  F/ x  B  Fn  On
2 nfra1 2941 . . . 4  |-  F/ x A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) )
31, 2nfan 1828 . . 3  |-  F/ x
( B  Fn  On  /\ 
A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )
4 nfv 1843 . . . . . 6  |-  F/ x
( B `  y
)  =  ( F `
 y )
53, 4nfim 1825 . . . . 5  |-  F/ x
( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  y )  =  ( F `  y ) )
6 fveq2 6191 . . . . . . 7  |-  ( x  =  y  ->  ( B `  x )  =  ( B `  y ) )
7 fveq2 6191 . . . . . . 7  |-  ( x  =  y  ->  ( F `  x )  =  ( F `  y ) )
86, 7eqeq12d 2637 . . . . . 6  |-  ( x  =  y  ->  (
( B `  x
)  =  ( F `
 x )  <->  ( B `  y )  =  ( F `  y ) ) )
98imbi2d 330 . . . . 5  |-  ( x  =  y  ->  (
( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  x )  =  ( F `  x ) )  <->  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  y )  =  ( F `  y ) ) ) )
10 r19.21v 2960 . . . . . 6  |-  ( A. y  e.  x  (
( B  Fn  On  /\ 
A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  y )  =  ( F `  y ) )  <->  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  A. y  e.  x  ( B `  y )  =  ( F `  y ) ) )
11 rsp 2929 . . . . . . . . . 10  |-  ( A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) )  ->  ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) ) )
12 onss 6990 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  On  ->  x  C_  On )
13 tfr.1 . . . . . . . . . . . . . . . . . . . . . 22  |-  F  = recs ( G )
1413tfr1 7493 . . . . . . . . . . . . . . . . . . . . 21  |-  F  Fn  On
15 fvreseq 6319 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( B  Fn  On  /\  F  Fn  On )  /\  x  C_  On )  ->  ( ( B  |`  x )  =  ( F  |`  x )  <->  A. y  e.  x  ( B `  y )  =  ( F `  y ) ) )
1614, 15mpanl2 717 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  Fn  On  /\  x  C_  On )  -> 
( ( B  |`  x )  =  ( F  |`  x )  <->  A. y  e.  x  ( B `  y )  =  ( F `  y ) ) )
17 fveq2 6191 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  |`  x )  =  ( F  |`  x )  ->  ( G `  ( B  |`  x ) )  =  ( G `  ( F  |`  x ) ) )
1816, 17syl6bir 244 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  Fn  On  /\  x  C_  On )  -> 
( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( G `  ( B  |`  x ) )  =  ( G `
 ( F  |`  x ) ) ) )
1912, 18sylan2 491 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  Fn  On  /\  x  e.  On )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( G `  ( B  |`  x ) )  =  ( G `
 ( F  |`  x ) ) ) )
2019ancoms 469 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  On  /\  B  Fn  On )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( G `  ( B  |`  x ) )  =  ( G `
 ( F  |`  x ) ) ) )
2120imp 445 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  On  /\  B  Fn  On )  /\  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  ->  ( G `  ( B  |`  x
) )  =  ( G `  ( F  |`  x ) ) )
2221adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  On  /\  B  Fn  On )  /\  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  /\  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  /\  x  e.  On ) )  -> 
( G `  ( B  |`  x ) )  =  ( G `  ( F  |`  x ) ) )
2313tfr2 7494 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  On  ->  ( F `  x )  =  ( G `  ( F  |`  x ) ) )
2423jctr 565 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
( x  e.  On  ->  ( B `  x
)  =  ( G `
 ( B  |`  x ) ) )  /\  ( x  e.  On  ->  ( F `  x )  =  ( G `  ( F  |`  x ) ) ) ) )
25 jcab 907 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  On  ->  ( ( B `  x
)  =  ( G `
 ( B  |`  x ) )  /\  ( F `  x )  =  ( G `  ( F  |`  x ) ) ) )  <->  ( (
x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  /\  (
x  e.  On  ->  ( F `  x )  =  ( G `  ( F  |`  x ) ) ) ) )
2624, 25sylibr 224 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( ( B `  x
)  =  ( G `
 ( B  |`  x ) )  /\  ( F `  x )  =  ( G `  ( F  |`  x ) ) ) ) )
27 eqeq12 2635 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( B `  x
)  =  ( G `
 ( B  |`  x ) )  /\  ( F `  x )  =  ( G `  ( F  |`  x ) ) )  ->  (
( B `  x
)  =  ( F `
 x )  <->  ( G `  ( B  |`  x
) )  =  ( G `  ( F  |`  x ) ) ) )
2826, 27syl6 35 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( ( B `  x
)  =  ( F `
 x )  <->  ( G `  ( B  |`  x
) )  =  ( G `  ( F  |`  x ) ) ) ) )
2928imp 445 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  e.  On  ->  ( B `  x
)  =  ( G `
 ( B  |`  x ) ) )  /\  x  e.  On )  ->  ( ( B `
 x )  =  ( F `  x
)  <->  ( G `  ( B  |`  x ) )  =  ( G `
 ( F  |`  x ) ) ) )
3029adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( ( x  e.  On  /\  B  Fn  On )  /\  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  /\  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  /\  x  e.  On ) )  -> 
( ( B `  x )  =  ( F `  x )  <-> 
( G `  ( B  |`  x ) )  =  ( G `  ( F  |`  x ) ) ) )
3122, 30mpbird 247 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  e.  On  /\  B  Fn  On )  /\  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  /\  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  /\  x  e.  On ) )  -> 
( B `  x
)  =  ( F `
 x ) )
3231exp43 640 . . . . . . . . . . . . 13  |-  ( ( x  e.  On  /\  B  Fn  On )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3332com4t 93 . . . . . . . . . . . 12  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( ( x  e.  On  /\  B  Fn  On )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3433exp4a 633 . . . . . . . . . . 11  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( x  e.  On  ->  ( B  Fn  On  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) ) )
3534pm2.43d 53 . . . . . . . . . 10  |-  ( ( x  e.  On  ->  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( B  Fn  On  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3611, 35syl 17 . . . . . . . . 9  |-  ( A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) )  ->  ( x  e.  On  ->  ( B  Fn  On  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3736com3l 89 . . . . . . . 8  |-  ( x  e.  On  ->  ( B  Fn  On  ->  ( A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) ) )
3837impd 447 . . . . . . 7  |-  ( x  e.  On  ->  (
( B  Fn  On  /\ 
A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( A. y  e.  x  ( B `  y )  =  ( F `  y )  ->  ( B `  x )  =  ( F `  x ) ) ) )
3938a2d 29 . . . . . 6  |-  ( x  e.  On  ->  (
( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  A. y  e.  x  ( B `  y )  =  ( F `  y ) )  -> 
( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  x )  =  ( F `  x ) ) ) )
4010, 39syl5bi 232 . . . . 5  |-  ( x  e.  On  ->  ( A. y  e.  x  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  y )  =  ( F `  y ) )  ->  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  x )  =  ( F `  x ) ) ) )
415, 9, 40tfis2f 7055 . . . 4  |-  ( x  e.  On  ->  (
( B  Fn  On  /\ 
A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  ( B `  x )  =  ( F `  x ) ) )
4241com12 32 . . 3  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  (
x  e.  On  ->  ( B `  x )  =  ( F `  x ) ) )
433, 42ralrimi 2957 . 2  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  A. x  e.  On  ( B `  x )  =  ( F `  x ) )
44 eqfnfv 6311 . . . 4  |-  ( ( B  Fn  On  /\  F  Fn  On )  ->  ( B  =  F  <->  A. x  e.  On  ( B `  x )  =  ( F `  x ) ) )
4514, 44mpan2 707 . . 3  |-  ( B  Fn  On  ->  ( B  =  F  <->  A. x  e.  On  ( B `  x )  =  ( F `  x ) ) )
4645biimpar 502 . 2  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( F `  x ) )  ->  B  =  F )
4743, 46syldan 487 1  |-  ( ( B  Fn  On  /\  A. x  e.  On  ( B `  x )  =  ( G `  ( B  |`  x ) ) )  ->  B  =  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574    |` cres 5116   Oncon0 5723    Fn wfn 5883   ` cfv 5888  recscrecs 7467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-wrecs 7407  df-recs 7468
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator