| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgbtwnexch3 | Structured version Visualization version Unicode version | ||
| Description: Exchange the first endpoint in betweenness. Left-hand side of Theorem 3.6 of [Schwabhauser] p. 30. (Contributed by Thierry Arnoux, 18-Mar-2019.) |
| Ref | Expression |
|---|---|
| tkgeom.p |
|
| tkgeom.d |
|
| tkgeom.i |
|
| tkgeom.g |
|
| tgbtwnintr.1 |
|
| tgbtwnintr.2 |
|
| tgbtwnintr.3 |
|
| tgbtwnintr.4 |
|
| tgbtwnexch3.5 |
|
| tgbtwnexch3.6 |
|
| Ref | Expression |
|---|---|
| tgbtwnexch3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tkgeom.p |
. 2
| |
| 2 | tkgeom.d |
. 2
| |
| 3 | tkgeom.i |
. 2
| |
| 4 | tkgeom.g |
. 2
| |
| 5 | tgbtwnintr.2 |
. 2
| |
| 6 | tgbtwnintr.3 |
. 2
| |
| 7 | tgbtwnintr.4 |
. 2
| |
| 8 | tgbtwnintr.1 |
. 2
| |
| 9 | tgbtwnexch3.5 |
. . 3
| |
| 10 | 1, 2, 3, 4, 8, 5, 6, 9 | tgbtwncom 25383 |
. 2
|
| 11 | tgbtwnexch3.6 |
. . 3
| |
| 12 | 1, 2, 3, 4, 8, 6, 7, 11 | tgbtwncom 25383 |
. 2
|
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 10, 12 | tgbtwnintr 25388 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-trkgc 25347 df-trkgb 25348 df-trkgcb 25349 df-trkg 25352 |
| This theorem is referenced by: tgbtwnouttr2 25390 tgifscgr 25403 tgcgrxfr 25413 tgbtwnconn1lem1 25467 tgbtwnconn1lem2 25468 tgbtwnconn1lem3 25469 tgbtwnconn2 25471 tgbtwnconn3 25472 btwnhl 25509 tglineeltr 25526 miriso 25565 krippenlem 25585 outpasch 25647 hlpasch 25648 |
| Copyright terms: Public domain | W3C validator |