MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  topnval Structured version   Visualization version   Unicode version

Theorem topnval 16095
Description: Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.)
Hypotheses
Ref Expression
topnval.1  |-  B  =  ( Base `  W
)
topnval.2  |-  J  =  (TopSet `  W )
Assertion
Ref Expression
topnval  |-  ( Jt  B )  =  ( TopOpen `  W )

Proof of Theorem topnval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . 6  |-  ( w  =  W  ->  (TopSet `  w )  =  (TopSet `  W ) )
2 topnval.2 . . . . . 6  |-  J  =  (TopSet `  W )
31, 2syl6eqr 2674 . . . . 5  |-  ( w  =  W  ->  (TopSet `  w )  =  J )
4 fveq2 6191 . . . . . 6  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
5 topnval.1 . . . . . 6  |-  B  =  ( Base `  W
)
64, 5syl6eqr 2674 . . . . 5  |-  ( w  =  W  ->  ( Base `  w )  =  B )
73, 6oveq12d 6668 . . . 4  |-  ( w  =  W  ->  (
(TopSet `  w )t  ( Base `  w ) )  =  ( Jt  B ) )
8 df-topn 16084 . . . 4  |-  TopOpen  =  ( w  e.  _V  |->  ( (TopSet `  w )t  ( Base `  w ) ) )
9 ovex 6678 . . . 4  |-  ( Jt  B )  e.  _V
107, 8, 9fvmpt 6282 . . 3  |-  ( W  e.  _V  ->  ( TopOpen
`  W )  =  ( Jt  B ) )
1110eqcomd 2628 . 2  |-  ( W  e.  _V  ->  ( Jt  B )  =  (
TopOpen `  W ) )
12 0rest 16090 . . 3  |-  ( (/)t  B )  =  (/)
13 fvprc 6185 . . . . 5  |-  ( -.  W  e.  _V  ->  (TopSet `  W )  =  (/) )
142, 13syl5eq 2668 . . . 4  |-  ( -.  W  e.  _V  ->  J  =  (/) )
1514oveq1d 6665 . . 3  |-  ( -.  W  e.  _V  ->  ( Jt  B )  =  (
(/)t  B ) )
16 fvprc 6185 . . 3  |-  ( -.  W  e.  _V  ->  (
TopOpen `  W )  =  (/) )
1712, 15, 163eqtr4a 2682 . 2  |-  ( -.  W  e.  _V  ->  ( Jt  B )  =  (
TopOpen `  W ) )
1811, 17pm2.61i 176 1  |-  ( Jt  B )  =  ( TopOpen `  W )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   ` cfv 5888  (class class class)co 6650   Basecbs 15857  TopSetcts 15947   ↾t crest 16081   TopOpenctopn 16082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-rest 16083  df-topn 16084
This theorem is referenced by:  topnid  16096  topnpropd  16097  oppgtopn  17783  symgtopn  17825  mgptopn  18498  resstopn  20990  prdstopn  21431  tuslem  22071  xrge0tsms  22637  om1opn  22836  xrge0tsmsd  29785  xrge0tmdOLD  29991
  Copyright terms: Public domain W3C validator