HomeHome Metamath Proof Explorer
Theorem List (p. 161 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 16001-16100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrngbase 16001 The base set of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  R  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }   =>    |-  ( B  e.  V  ->  B  =  (
 Base `  R ) )
 
Theoremrngplusg 16002 The additive operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  R  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }   =>    |-  (  .+  e.  V  ->  .+  =  ( +g  `  R ) )
 
Theoremrngmulr 16003 The multiplicative operation of a constructed ring. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 30-Apr-2015.)
 |-  R  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }   =>    |-  (  .x.  e.  V  ->  .x.  =  ( .r `  R ) )
 
Theoremstarvndx 16004 Index value of the df-starv 15956 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( *r `  ndx )  =  4
 
Theoremstarvid 16005 Utility theorem: index-independent form of df-starv 15956. (Contributed by Mario Carneiro, 6-Oct-2013.)
 |-  *r  = Slot  ( *r `  ndx )
 
Theoremressmulr 16006  .r is unaffected by restriction. (Contributed by Stefan O'Rear, 27-Nov-2014.)
 |-  S  =  ( Rs  A )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( A  e.  V  ->  .x.  =  ( .r `  S ) )
 
Theoremressstarv 16007  *r is unaffected by restriction. (Contributed by Mario Carneiro, 9-Oct-2015.)
 |-  S  =  ( Rs  A )   &    |-  .*  =  ( *r `  R )   =>    |-  ( A  e.  V  ->  .*  =  ( *r `  S ) )
 
Theoremsrngfn 16008 A constructed star ring is a function with domain contained in  1 thru  4. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 14-Aug-2015.)
 |-  R  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  {
 <. ( *r `  ndx ) ,  .*  >. } )   =>    |-  R Struct  <. 1 ,  4
 >.
 
Theoremsrngbase 16009 The base set of a constructed star ring. (Contributed by Mario Carneiro, 18-Nov-2013.) (Revised by Mario Carneiro, 6-May-2015.)
 |-  R  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  {
 <. ( *r `  ndx ) ,  .*  >. } )   =>    |-  ( B  e.  X  ->  B  =  ( Base `  R ) )
 
Theoremsrngplusg 16010 The addition operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  R  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  {
 <. ( *r `  ndx ) ,  .*  >. } )   =>    |-  (  .+  e.  X  ->  .+  =  ( +g  `  R ) )
 
Theoremsrngmulr 16011 The multiplication operation of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  R  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  {
 <. ( *r `  ndx ) ,  .*  >. } )   =>    |-  (  .x.  e.  X  ->  .x.  =  ( .r
 `  R ) )
 
Theoremsrnginvl 16012 The involution function of a constructed star ring. (Contributed by Mario Carneiro, 20-Jun-2015.)
 |-  R  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  {
 <. ( *r `  ndx ) ,  .*  >. } )   =>    |-  (  .*  e.  X  ->  .*  =  ( *r `  R ) )
 
Theoremscandx 16013 Index value of the df-sca 15957 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  (Scalar `  ndx )  =  5
 
Theoremscaid 16014 Utility theorem: index-independent form of scalar df-sca 15957. (Contributed by Mario Carneiro, 19-Jun-2014.)
 |- Scalar  = Slot  (Scalar `  ndx )
 
Theoremvscandx 16015 Index value of the df-vsca 15958 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( .s `  ndx )  =  6
 
Theoremvscaid 16016 Utility theorem: index-independent form of scalar product df-vsca 15958. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
 |- 
 .s  = Slot  ( .s ` 
 ndx )
 
Theoremlmodstr 16017 A constructed left module or left vector space is a function. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.)
 |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } )   =>    |-  W Struct  <.
 1 ,  6 >.
 
Theoremlmodbase 16018 The base set of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.)
 |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } )   =>    |-  ( B  e.  X  ->  B  =  ( Base `  W ) )
 
Theoremlmodplusg 16019 The additive operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.)
 |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } )   =>    |-  (  .+  e.  X  ->  .+  =  ( +g  `  W )
 )
 
Theoremlmodsca 16020 The set of scalars of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.)
 |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } )   =>    |-  ( F  e.  X  ->  F  =  (Scalar `  W ) )
 
Theoremlmodvsca 16021 The scalar product operation of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.)
 |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  F >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. } )   =>    |-  (  .x.  e.  X  ->  .x.  =  ( .s `  W ) )
 
Theoremipndx 16022 Index value of the df-ip 15959 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( .i `  ndx )  =  8
 
Theoremipid 16023 Utility theorem: index-independent form of df-ip 15959. (Contributed by Mario Carneiro, 6-Oct-2013.)
 |- 
 .i  = Slot  ( .i ` 
 ndx )
 
Theoremipsstr 16024 Lemma to shorten proofs of ipsbase 16025 through ipsvsca 16029. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   =>    |-  A Struct  <. 1 ,  8
 >.
 
Theoremipsbase 16025 The base set of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   =>    |-  ( B  e.  V  ->  B  =  ( Base `  A ) )
 
Theoremipsaddg 16026 The additive operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   =>    |-  (  .+  e.  V  ->  .+  =  ( +g  `  A ) )
 
Theoremipsmulr 16027 The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   =>    |-  (  .X.  e.  V  -> 
 .X.  =  ( .r `  A ) )
 
Theoremipssca 16028 The set of scalars of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   =>    |-  ( S  e.  V  ->  S  =  (Scalar `  A ) )
 
Theoremipsvsca 16029 The scalar product operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   =>    |-  (  .x.  e.  V  ->  .x.  =  ( .s
 `  A ) )
 
Theoremipsip 16030 The multiplicative operation of a constructed inner product space. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.)
 |-  A  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .X.  >. }  u.  {
 <. (Scalar `  ndx ) ,  S >. ,  <. ( .s
 `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  I >. } )   =>    |-  ( I  e.  V  ->  I  =  ( .i
 `  A ) )
 
Theoremresssca 16031 Scalar is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.)
 |-  H  =  ( Gs  A )   &    |-  F  =  (Scalar `  G )   =>    |-  ( A  e.  V  ->  F  =  (Scalar `  H ) )
 
Theoremressvsca 16032  .s is unaffected by restriction. (Contributed by Mario Carneiro, 7-Dec-2014.)
 |-  H  =  ( Gs  A )   &    |-  .x.  =  ( .s `  G )   =>    |-  ( A  e.  V  ->  .x.  =  ( .s `  H ) )
 
Theoremressip 16033 The inner product is unaffected by restriction. (Contributed by Thierry Arnoux, 16-Jun-2019.)
 |-  H  =  ( Gs  A )   &    |-  .,  =  ( .i `  G )   =>    |-  ( A  e.  V  ->  .,  =  ( .i `  H ) )
 
Theoremphlstr 16034 A constructed pre-Hilbert space is a structure. Starting from lmodstr 16017 (which has 4 members), we chain strleun 15972 once more, adding an ordered pair to the function, to get all 5 members. (Contributed by Mario Carneiro, 1-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.)
 |-  H  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  T >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  .,  >. } )   =>    |-  H Struct  <. 1 ,  8 >.
 
Theoremphlbase 16035 The base set of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.)
 |-  H  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  T >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  .,  >. } )   =>    |-  ( B  e.  X  ->  B  =  (
 Base `  H ) )
 
Theoremphlplusg 16036 The additive operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.)
 |-  H  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  T >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  .,  >. } )   =>    |-  (  .+  e.  X  ->  .+  =  ( +g  `  H ) )
 
Theoremphlsca 16037 The ring of scalars of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.)
 |-  H  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  T >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  .,  >. } )   =>    |-  ( T  e.  X  ->  T  =  (Scalar `  H ) )
 
Theoremphlvsca 16038 The scalar product operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.)
 |-  H  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  T >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  .,  >. } )   =>    |-  (  .x.  e.  X  ->  .x.  =  ( .s `  H ) )
 
Theoremphlip 16039 The inner product (Hermitian form) operation of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013.) (Revised by Mario Carneiro, 29-Aug-2015.)
 |-  H  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (Scalar `  ndx ) ,  T >. }  u.  { <. ( .s `  ndx ) ,  .x.  >. ,  <. ( .i `  ndx ) ,  .,  >. } )   =>    |-  (  .,  e.  X  ->  .,  =  ( .i `  H ) )
 
Theoremtsetndx 16040 Index value of the df-tset 15960 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  (TopSet `  ndx )  =  9
 
Theoremtsetid 16041 Utility theorem: index-independent form of df-tset 15960. (Contributed by NM, 20-Oct-2012.)
 |- TopSet  = Slot  (TopSet `  ndx )
 
Theoremtopgrpstr 16042 A constructed topological group is a structure. (Contributed by Mario Carneiro, 29-Aug-2015.)
 |-  W  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. }   =>    |-  W Struct  <. 1 ,  9
 >.
 
Theoremtopgrpbas 16043 The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.)
 |-  W  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. }   =>    |-  ( B  e.  X  ->  B  =  ( Base `  W ) )
 
Theoremtopgrpplusg 16044 The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.)
 |-  W  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. }   =>    |-  (  .+  e.  X  ->  .+  =  ( +g  `  W ) )
 
Theoremtopgrptset 16045 The topology of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.)
 |-  W  =  { <. (
 Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. (TopSet `  ndx ) ,  J >. }   =>    |-  ( J  e.  X  ->  J  =  (TopSet `  W ) )
 
Theoremresstset 16046 TopSet is unaffected by restriction. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  H  =  ( Gs  A )   &    |-  J  =  (TopSet `  G )   =>    |-  ( A  e.  V  ->  J  =  (TopSet `  H ) )
 
Theoremplendx 16047 Index value of the df-ple 15961 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.)
 |-  ( le `  ndx )  = ; 1 0
 
TheoremplendxOLD 16048 Obsolete version of df-ple 15961 as of 9-Sep-2021. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( le `  ndx )  =  10
 
Theorempleid 16049 Utility theorem: self-referencing, index-independent form of df-ple 15961. (Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.)
 |- 
 le  = Slot  ( le ` 
 ndx )
 
TheorempleidOLD 16050 Obsolete version of otpsstr 16051 as of 9-Sep-2021. (Contributed by Mario Carneiro, 9-Nov-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |- 
 le  = Slot  ( le ` 
 ndx )
 
Theoremotpsstr 16051 Functionality of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.)
 |-  K  =  { <. (
 Base `  ndx ) ,  B >. ,  <. (TopSet `  ndx ) ,  J >. , 
 <. ( le `  ndx ) ,  .<_  >. }   =>    |-  K Struct  <. 1 , ; 1
 0 >.
 
Theoremotpsbas 16052 The base set of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.)
 |-  K  =  { <. (
 Base `  ndx ) ,  B >. ,  <. (TopSet `  ndx ) ,  J >. , 
 <. ( le `  ndx ) ,  .<_  >. }   =>    |-  ( B  e.  V  ->  B  =  (
 Base `  K ) )
 
Theoremotpstset 16053 The open sets of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.)
 |-  K  =  { <. (
 Base `  ndx ) ,  B >. ,  <. (TopSet `  ndx ) ,  J >. , 
 <. ( le `  ndx ) ,  .<_  >. }   =>    |-  ( J  e.  V  ->  J  =  (TopSet `  K ) )
 
Theoremotpsle 16054 The order of a topological ordered space. (Contributed by Mario Carneiro, 12-Nov-2015.) (Revised by AV, 9-Sep-2021.)
 |-  K  =  { <. (
 Base `  ndx ) ,  B >. ,  <. (TopSet `  ndx ) ,  J >. , 
 <. ( le `  ndx ) ,  .<_  >. }   =>    |-  (  .<_  e.  V  -> 
 .<_  =  ( le `  K ) )
 
TheoremotpsstrOLD 16055 Obsolete version of otpsstr 16051 as of 9-Sep-2021. (Contributed by Mario Carneiro, 12-Nov-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  K  =  { <. (
 Base `  ndx ) ,  B >. ,  <. (TopSet `  ndx ) ,  J >. , 
 <. ( le `  ndx ) ,  .<_  >. }   =>    |-  K Struct  <. 1 ,  10 >.
 
TheoremotpsbasOLD 16056 Obsolete version of otpsbas 16052 as of 9-Sep-2021. (Contributed by Mario Carneiro, 12-Nov-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  K  =  { <. (
 Base `  ndx ) ,  B >. ,  <. (TopSet `  ndx ) ,  J >. , 
 <. ( le `  ndx ) ,  .<_  >. }   =>    |-  ( B  e.  V  ->  B  =  (
 Base `  K ) )
 
TheoremotpstsetOLD 16057 Obsolete version of otpstset 16053 as of 9-Sep-2021. (Contributed by Mario Carneiro, 12-Nov-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  K  =  { <. (
 Base `  ndx ) ,  B >. ,  <. (TopSet `  ndx ) ,  J >. , 
 <. ( le `  ndx ) ,  .<_  >. }   =>    |-  ( J  e.  V  ->  J  =  (TopSet `  K ) )
 
TheoremotpsleOLD 16058 Obsolete version of otpsle 16054 as of 9-Sep-2021. (Contributed by Mario Carneiro, 12-Nov-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  K  =  { <. (
 Base `  ndx ) ,  B >. ,  <. (TopSet `  ndx ) ,  J >. , 
 <. ( le `  ndx ) ,  .<_  >. }   =>    |-  (  .<_  e.  V  -> 
 .<_  =  ( le `  K ) )
 
Theoremressle 16059  le is unaffected by restriction. (Contributed by Mario Carneiro, 3-Nov-2015.)
 |-  W  =  ( Ks  A )   &    |-  .<_  =  ( le `  K )   =>    |-  ( A  e.  V  -> 
 .<_  =  ( le `  W ) )
 
Theoremocndx 16060 Index value of the df-ocomp 15963 slot. (Contributed by Mario Carneiro, 25-Oct-2015.)
 |-  ( oc `  ndx )  = ; 1 1
 
Theoremocid 16061 Utility theorem: index-independent form of df-ocomp 15963. (Contributed by Mario Carneiro, 25-Oct-2015.)
 |- 
 oc  = Slot  ( oc ` 
 ndx )
 
Theoremdsndx 16062 Index value of the df-ds 15964 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( dist `  ndx )  = ; 1
 2
 
Theoremdsid 16063 Utility theorem: index-independent form of df-ds 15964. (Contributed by Mario Carneiro, 23-Dec-2013.)
 |- 
 dist  = Slot  ( dist `  ndx )
 
Theoremunifndx 16064 Index value of the df-unif 15965 slot. (Contributed by Thierry Arnoux, 17-Dec-2017.)
 |-  ( UnifSet `  ndx )  = ; 1
 3
 
Theoremunifid 16065 Utility theorem: index-independent form of df-unif 15965. (Contributed by Thierry Arnoux, 17-Dec-2017.)
 |- 
 UnifSet  = Slot  ( UnifSet `  ndx )
 
Theoremodrngstr 16066 Functionality of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.) (Proof shortened by AV, 15-Sep-2021.)
 |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  {
 <. (TopSet `  ndx ) ,  J >. ,  <. ( le ` 
 ndx ) ,  .<_  >. ,  <. ( dist `  ndx ) ,  D >. } )   =>    |-  W Struct  <. 1 , ; 1 2 >.
 
Theoremodrngbas 16067 The base set of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  {
 <. (TopSet `  ndx ) ,  J >. ,  <. ( le ` 
 ndx ) ,  .<_  >. ,  <. ( dist `  ndx ) ,  D >. } )   =>    |-  ( B  e.  V  ->  B  =  ( Base `  W ) )
 
Theoremodrngplusg 16068 The addition operation of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  {
 <. (TopSet `  ndx ) ,  J >. ,  <. ( le ` 
 ndx ) ,  .<_  >. ,  <. ( dist `  ndx ) ,  D >. } )   =>    |-  (  .+  e.  V  ->  .+  =  ( +g  `  W ) )
 
Theoremodrngmulr 16069 The multiplication operation of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  {
 <. (TopSet `  ndx ) ,  J >. ,  <. ( le ` 
 ndx ) ,  .<_  >. ,  <. ( dist `  ndx ) ,  D >. } )   =>    |-  (  .x.  e.  V  ->  .x.  =  ( .r
 `  W ) )
 
Theoremodrngtset 16070 The open sets of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  {
 <. (TopSet `  ndx ) ,  J >. ,  <. ( le ` 
 ndx ) ,  .<_  >. ,  <. ( dist `  ndx ) ,  D >. } )   =>    |-  ( J  e.  V  ->  J  =  (TopSet `  W ) )
 
Theoremodrngle 16071 The order of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  {
 <. (TopSet `  ndx ) ,  J >. ,  <. ( le ` 
 ndx ) ,  .<_  >. ,  <. ( dist `  ndx ) ,  D >. } )   =>    |-  (  .<_  e.  V  ->  .<_  =  ( le `  W ) )
 
Theoremodrngds 16072 The metric of an ordered metric ring. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  W  =  ( { <. ( Base `  ndx ) ,  B >. ,  <. ( +g  ` 
 ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }  u.  {
 <. (TopSet `  ndx ) ,  J >. ,  <. ( le ` 
 ndx ) ,  .<_  >. ,  <. ( dist `  ndx ) ,  D >. } )   =>    |-  ( D  e.  V  ->  D  =  ( dist `  W ) )
 
Theoremressds 16073  dist is unaffected by restriction. (Contributed by Mario Carneiro, 26-Aug-2015.)
 |-  H  =  ( Gs  A )   &    |-  D  =  (
 dist `  G )   =>    |-  ( A  e.  V  ->  D  =  (
 dist `  H ) )
 
Theoremhomndx 16074 Index value of the df-hom 15966 slot. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |-  ( Hom  `  ndx )  = ; 1 4
 
Theoremhomid 16075 Utility theorem: index-independent form of df-hom 15966. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |- 
 Hom  = Slot  ( Hom  `  ndx )
 
Theoremccondx 16076 Index value of the df-cco 15967 slot. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |-  (comp `  ndx )  = ; 1
 5
 
Theoremccoid 16077 Utility theorem: index-independent form of df-cco 15967. (Contributed by Mario Carneiro, 7-Jan-2017.)
 |- comp  = Slot  (comp `  ndx )
 
Theoremresshom 16078  Hom is unaffected by restriction. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  D  =  ( Cs  A )   &    |-  H  =  ( Hom  `  C )   =>    |-  ( A  e.  V  ->  H  =  ( Hom  `  D ) )
 
Theoremressco 16079 comp is unaffected by restriction. (Contributed by Mario Carneiro, 5-Jan-2017.)
 |-  D  =  ( Cs  A )   &    |-  .x.  =  (comp `  C )   =>    |-  ( A  e.  V  ->  .x.  =  (comp `  D ) )
 
Theoremslotsbhcdif 16080 The slots  Base,  Hom and comp are different. (Contributed by AV, 5-Mar-2020.)
 |-  ( ( Base `  ndx )  =/=  ( Hom  `  ndx )  /\  ( Base `  ndx )  =/=  (comp `  ndx )  /\  ( Hom  `  ndx )  =/=  (comp `  ndx ) )
 
7.1.3  Definition of the structure product
 
Syntaxcrest 16081 Extend class notation with the function returning a subspace topology.
 classt
 
Syntaxctopn 16082 Extend class notation with the topology extractor function.
 class  TopOpen
 
Definitiondf-rest 16083* Function returning the subspace topology induced by the topology  y and the set  x. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
 |-t  =  ( j  e.  _V ,  x  e.  _V  |->  ran  ( y  e.  j  |->  ( y  i^i  x ) ) )
 
Definitiondf-topn 16084 Define the topology extractor function. This differs from df-tset 15960 when a structure has been restricted using df-ress 15865; in this case the TopSet component will still have a topology over the larger set, and this function fixes this by restricting the topology as well. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  TopOpen  =  ( w  e. 
 _V  |->  ( (TopSet `  w )t  ( Base `  w )
 ) )
 
Theoremrestfn 16085 The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.)
 |-t  Fn  ( _V  X.  _V )
 
Theoremtopnfn 16086 The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  TopOpen 
 Fn  _V
 
Theoremrestval 16087* The subspace topology induced by the topology  J on the set  A. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.)
 |-  ( ( J  e.  V  /\  A  e.  W )  ->  ( Jt  A )  =  ran  ( x  e.  J  |->  ( x  i^i  A ) ) )
 
Theoremelrest 16088* The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
 |-  ( ( J  e.  V  /\  B  e.  W )  ->  ( A  e.  ( Jt  B )  <->  E. x  e.  J  A  =  ( x  i^i  B ) ) )
 
Theoremelrestr 16089 Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
 |-  ( ( J  e.  V  /\  S  e.  W  /\  A  e.  J ) 
 ->  ( A  i^i  S )  e.  ( Jt  S ) )
 
Theorem0rest 16090 Value of the structure restriction when the topology input is empty. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  ( (/)t  A )  =  (/)
 
Theoremrestid2 16091 The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  ( ( A  e.  V  /\  J  C_  ~P A )  ->  ( Jt  A )  =  J )
 
Theoremrestsspw 16092 The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  ( Jt  A )  C_  ~P A
 
Theoremfirest 16093 The finite intersections operator commutes with restriction. (Contributed by Mario Carneiro, 30-Aug-2015.)
 |-  ( fi `  ( Jt  A ) )  =  ( ( fi `  J )t  A )
 
Theoremrestid 16094 The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
 |-  X  =  U. J   =>    |-  ( J  e.  V  ->  ( Jt  X )  =  J )
 
Theoremtopnval 16095 Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  B  =  ( Base `  W )   &    |-  J  =  (TopSet `  W )   =>    |-  ( Jt  B )  =  (
 TopOpen `  W )
 
Theoremtopnid 16096 Value of the topology extractor function when the topology is defined over the same set as the base. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  B  =  ( Base `  W )   &    |-  J  =  (TopSet `  W )   =>    |-  ( J  C_  ~P B  ->  J  =  ( TopOpen `  W ) )
 
Theoremtopnpropd 16097 The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.)
 |-  ( ph  ->  ( Base `  K )  =  ( Base `  L )
 )   &    |-  ( ph  ->  (TopSet `  K )  =  (TopSet `  L ) )   =>    |-  ( ph  ->  (
 TopOpen `  K )  =  ( TopOpen `  L )
 )
 
Syntaxctg 16098 Extend class notation with a function that converts a basis to its corresponding topology.
 class  topGen
 
Syntaxcpt 16099 Extend class notation with a function whose value is a product topology.
 class  Xt_
 
Syntaxc0g 16100 Extend class notation with group identity element.
 class  0g
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >