Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlnidatb Structured version   Visualization version   Unicode version

Theorem trlnidatb 35464
Description: A lattice translation is not the identity iff its trace is an atom. TODO: Can proofs be reorganized so this goes with trlnidat 35460? Why do both this and ltrnideq 35462 need trlnidat 35460? (Contributed by NM, 4-Jun-2013.)
Hypotheses
Ref Expression
trlnidatb.b  |-  B  =  ( Base `  K
)
trlnidatb.a  |-  A  =  ( Atoms `  K )
trlnidatb.h  |-  H  =  ( LHyp `  K
)
trlnidatb.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlnidatb.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlnidatb  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( F  =/=  (  _I  |`  B )  <-> 
( R `  F
)  e.  A ) )

Proof of Theorem trlnidatb
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 trlnidatb.b . . . 4  |-  B  =  ( Base `  K
)
2 trlnidatb.a . . . 4  |-  A  =  ( Atoms `  K )
3 trlnidatb.h . . . 4  |-  H  =  ( LHyp `  K
)
4 trlnidatb.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
5 trlnidatb.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
61, 2, 3, 4, 5trlnidat 35460 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  ( R `  F )  e.  A
)
763expia 1267 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( F  =/=  (  _I  |`  B )  ->  ( R `  F )  e.  A
) )
8 eqid 2622 . . . . . 6  |-  ( le
`  K )  =  ( le `  K
)
98, 2, 3lhpexnle 35292 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  E. p  e.  A  -.  p ( le `  K ) W )
109adantr 481 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  E. p  e.  A  -.  p
( le `  K
) W )
111, 8, 2, 3, 4ltrnideq 35462 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( p  e.  A  /\  -.  p ( le
`  K ) W ) )  ->  ( F  =  (  _I  |`  B )  <->  ( F `  p )  =  p ) )
12113expa 1265 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W ) )  ->  ( F  =  (  _I  |`  B )  <-> 
( F `  p
)  =  p ) )
13 simp1l 1085 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W )  /\  ( F `  p )  =  p )  ->  ( K  e.  HL  /\  W  e.  H ) )
14 simp2 1062 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W )  /\  ( F `  p )  =  p )  ->  ( p  e.  A  /\  -.  p
( le `  K
) W ) )
15 simp1r 1086 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W )  /\  ( F `  p )  =  p )  ->  F  e.  T )
16 simp3 1063 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W )  /\  ( F `  p )  =  p )  ->  ( F `  p )  =  p )
17 eqid 2622 . . . . . . . . 9  |-  ( 0.
`  K )  =  ( 0. `  K
)
188, 17, 2, 3, 4, 5trl0 35457 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  -.  p
( le `  K
) W )  /\  ( F  e.  T  /\  ( F `  p
)  =  p ) )  ->  ( R `  F )  =  ( 0. `  K ) )
1913, 14, 15, 16, 18syl112anc 1330 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W )  /\  ( F `  p )  =  p )  ->  ( R `  F )  =  ( 0. `  K ) )
20193expia 1267 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W ) )  ->  ( ( F `  p )  =  p  ->  ( R `
 F )  =  ( 0. `  K
) ) )
21 simplll 798 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W ) )  ->  K  e.  HL )
22 hlatl 34647 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  AtLat )
2317, 2atn0 34595 . . . . . . . . 9  |-  ( ( K  e.  AtLat  /\  ( R `  F )  e.  A )  ->  ( R `  F )  =/=  ( 0. `  K
) )
2423ex 450 . . . . . . . 8  |-  ( K  e.  AtLat  ->  ( ( R `  F )  e.  A  ->  ( R `
 F )  =/=  ( 0. `  K
) ) )
2521, 22, 243syl 18 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W ) )  ->  ( ( R `  F )  e.  A  ->  ( R `
 F )  =/=  ( 0. `  K
) ) )
2625necon2bd 2810 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W ) )  ->  ( ( R `  F )  =  ( 0. `  K )  ->  -.  ( R `  F )  e.  A ) )
2720, 26syld 47 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W ) )  ->  ( ( F `  p )  =  p  ->  -.  ( R `  F )  e.  A ) )
2812, 27sylbid 230 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T )  /\  (
p  e.  A  /\  -.  p ( le `  K ) W ) )  ->  ( F  =  (  _I  |`  B )  ->  -.  ( R `  F )  e.  A
) )
2910, 28rexlimddv 3035 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( F  =  (  _I  |`  B )  ->  -.  ( R `  F )  e.  A
) )
3029necon2ad 2809 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( ( R `  F )  e.  A  ->  F  =/=  (  _I  |`  B ) ) )
317, 30impbid 202 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( F  =/=  (  _I  |`  B )  <-> 
( R `  F
)  e.  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   class class class wbr 4653    _I cid 5023    |` cres 5116   ` cfv 5888   Basecbs 15857   lecple 15948   0.cp0 17037   Atomscatm 34550   AtLatcal 34551   HLchlt 34637   LHypclh 35270   LTrncltrn 35387   trLctrl 35445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-lhyp 35274  df-laut 35275  df-ldil 35390  df-ltrn 35391  df-trl 35446
This theorem is referenced by:  trlid0b  35465  cdlemfnid  35852  trlconid  36013  dih1dimb2  36530
  Copyright terms: Public domain W3C validator