MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsk2 Structured version   Visualization version   Unicode version

Theorem tsk2 9587
Description: Two is an element of a nonempty Tarski class. (Contributed by FL, 22-Feb-2011.) (Proof shortened by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tsk2  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  2o  e.  T )

Proof of Theorem tsk2
StepHypRef Expression
1 tsk1 9586 . 2  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  1o  e.  T )
2 df-2o 7561 . . 3  |-  2o  =  suc  1o
3 1on 7567 . . . 4  |-  1o  e.  On
4 tsksuc 9584 . . . 4  |-  ( ( T  e.  Tarski  /\  1o  e.  On  /\  1o  e.  T )  ->  suc  1o  e.  T )
53, 4mp3an2 1412 . . 3  |-  ( ( T  e.  Tarski  /\  1o  e.  T )  ->  suc  1o  e.  T )
62, 5syl5eqel 2705 . 2  |-  ( ( T  e.  Tarski  /\  1o  e.  T )  ->  2o  e.  T )
71, 6syldan 487 1  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  2o  e.  T )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990    =/= wne 2794   (/)c0 3915   Oncon0 5723   suc csuc 5725   1oc1o 7553   2oc2o 7554   Tarskictsk 9570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-suc 5729  df-1o 7560  df-2o 7561  df-tsk 9571
This theorem is referenced by:  2domtsk  9588
  Copyright terms: Public domain W3C validator