![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqimssi | Structured version Visualization version Unicode version |
Description: Infer subclass relationship from equality. (Contributed by NM, 6-Jan-2007.) |
Ref | Expression |
---|---|
eqimssi.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqimssi |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3624 |
. 2
![]() ![]() ![]() ![]() | |
2 | eqimssi.1 |
. 2
![]() ![]() ![]() ![]() | |
3 | 1, 2 | sseqtri 3637 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-in 3581 df-ss 3588 |
This theorem is referenced by: funi 5920 fpr 6421 tz7.48-2 7537 trcl 8604 zorn2lem4 9321 zmin 11784 elfzo1 12517 om2uzf1oi 12752 0trrel 13720 sumsplit 14499 isumless 14577 frlmip 20117 ust0 22023 rrxprds 23177 rrxip 23178 ovoliunnul 23275 vitalilem5 23381 logtayl 24406 nbgr2vtx1edg 26246 nbuhgr2vtx1edgb 26248 mayetes3i 28588 eulerpartlemsv2 30420 eulerpartlemsv3 30423 eulerpartlemv 30426 eulerpartlemb 30430 poimirlem9 33418 dvasin 33496 cnvrcl0 37932 corclrcl 37999 trclrelexplem 38003 cotrcltrcl 38017 he0 38078 idhe 38081 dvsid 38530 binomcxplemnotnn0 38555 fourierdlem62 40385 fourierdlem66 40389 |
Copyright terms: Public domain | W3C validator |