MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.12lem1 Structured version   Visualization version   Unicode version

Theorem tz9.12lem1 8650
Description: Lemma for tz9.12 8653. (Contributed by NM, 22-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
tz9.12lem.1  |-  A  e. 
_V
tz9.12lem.2  |-  F  =  ( z  e.  _V  |->  |^|
{ v  e.  On  |  z  e.  ( R1 `  v ) } )
Assertion
Ref Expression
tz9.12lem1  |-  ( F
" A )  C_  On
Distinct variable group:    z, v, A
Allowed substitution hints:    F( z, v)

Proof of Theorem tz9.12lem1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 imassrn 5477 . 2  |-  ( F
" A )  C_  ran  F
2 tz9.12lem.2 . . . 4  |-  F  =  ( z  e.  _V  |->  |^|
{ v  e.  On  |  z  e.  ( R1 `  v ) } )
32rnmpt 5371 . . 3  |-  ran  F  =  { x  |  E. z  e.  _V  x  =  |^| { v  e.  On  |  z  e.  ( R1 `  v
) } }
4 id 22 . . . . . 6  |-  ( x  =  |^| { v  e.  On  |  z  e.  ( R1 `  v ) }  ->  x  =  |^| { v  e.  On  |  z  e.  ( R1 `  v ) } )
5 ssrab2 3687 . . . . . . 7  |-  { v  e.  On  |  z  e.  ( R1 `  v ) }  C_  On
6 eqvisset 3211 . . . . . . . 8  |-  ( x  =  |^| { v  e.  On  |  z  e.  ( R1 `  v ) }  ->  |^|
{ v  e.  On  |  z  e.  ( R1 `  v ) }  e.  _V )
7 intex 4820 . . . . . . . 8  |-  ( { v  e.  On  | 
z  e.  ( R1
`  v ) }  =/=  (/)  <->  |^| { v  e.  On  |  z  e.  ( R1 `  v
) }  e.  _V )
86, 7sylibr 224 . . . . . . 7  |-  ( x  =  |^| { v  e.  On  |  z  e.  ( R1 `  v ) }  ->  { v  e.  On  | 
z  e.  ( R1
`  v ) }  =/=  (/) )
9 oninton 7000 . . . . . . 7  |-  ( ( { v  e.  On  |  z  e.  ( R1 `  v ) } 
C_  On  /\  { v  e.  On  |  z  e.  ( R1 `  v ) }  =/=  (/) )  ->  |^| { v  e.  On  |  z  e.  ( R1 `  v ) }  e.  On )
105, 8, 9sylancr 695 . . . . . 6  |-  ( x  =  |^| { v  e.  On  |  z  e.  ( R1 `  v ) }  ->  |^|
{ v  e.  On  |  z  e.  ( R1 `  v ) }  e.  On )
114, 10eqeltrd 2701 . . . . 5  |-  ( x  =  |^| { v  e.  On  |  z  e.  ( R1 `  v ) }  ->  x  e.  On )
1211rexlimivw 3029 . . . 4  |-  ( E. z  e.  _V  x  =  |^| { v  e.  On  |  z  e.  ( R1 `  v
) }  ->  x  e.  On )
1312abssi 3677 . . 3  |-  { x  |  E. z  e.  _V  x  =  |^| { v  e.  On  |  z  e.  ( R1 `  v ) } }  C_  On
143, 13eqsstri 3635 . 2  |-  ran  F  C_  On
151, 14sstri 3612 1  |-  ( F
" A )  C_  On
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   |^|cint 4475    |-> cmpt 4729   ran crn 5115   "cima 5117   Oncon0 5723   ` cfv 5888   R1cr1 8625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727
This theorem is referenced by:  tz9.12lem2  8651  tz9.12lem3  8652
  Copyright terms: Public domain W3C validator