| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ufilen | Structured version Visualization version Unicode version | ||
| Description: Any infinite set has an ultrafilter on it whose elements are of the same cardinality as the set. Any such ultrafilter is necessarily free. (Contributed by Jeff Hankins, 7-Dec-2009.) (Revised by Stefan O'Rear, 3-Aug-2015.) |
| Ref | Expression |
|---|---|
| ufilen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom 7961 |
. . . . . 6
| |
| 2 | 1 | brrelex2i 5159 |
. . . . 5
|
| 3 | numth3 9292 |
. . . . 5
| |
| 4 | 2, 3 | syl 17 |
. . . 4
|
| 5 | csdfil 21698 |
. . . 4
| |
| 6 | 4, 5 | mpancom 703 |
. . 3
|
| 7 | filssufil 21716 |
. . 3
| |
| 8 | 6, 7 | syl 17 |
. 2
|
| 9 | elfvex 6221 |
. . . . . . 7
| |
| 10 | 9 | ad2antlr 763 |
. . . . . 6
|
| 11 | ufilfil 21708 |
. . . . . . . 8
| |
| 12 | filelss 21656 |
. . . . . . . 8
| |
| 13 | 11, 12 | sylan 488 |
. . . . . . 7
|
| 14 | 13 | adantll 750 |
. . . . . 6
|
| 15 | ssdomg 8001 |
. . . . . 6
| |
| 16 | 10, 14, 15 | sylc 65 |
. . . . 5
|
| 17 | filfbas 21652 |
. . . . . . . . 9
| |
| 18 | 11, 17 | syl 17 |
. . . . . . . 8
|
| 19 | 18 | adantl 482 |
. . . . . . 7
|
| 20 | fbncp 21643 |
. . . . . . 7
| |
| 21 | 19, 20 | sylan 488 |
. . . . . 6
|
| 22 | difss 3737 |
. . . . . . . . . . . . . 14
| |
| 23 | elpw2g 4827 |
. . . . . . . . . . . . . 14
| |
| 24 | 22, 23 | mpbiri 248 |
. . . . . . . . . . . . 13
|
| 25 | 24 | 3ad2ant1 1082 |
. . . . . . . . . . . 12
|
| 26 | simp2 1062 |
. . . . . . . . . . . . . 14
| |
| 27 | dfss4 3858 |
. . . . . . . . . . . . . 14
| |
| 28 | 26, 27 | sylib 208 |
. . . . . . . . . . . . 13
|
| 29 | simp3 1063 |
. . . . . . . . . . . . 13
| |
| 30 | 28, 29 | eqbrtrd 4675 |
. . . . . . . . . . . 12
|
| 31 | difeq2 3722 |
. . . . . . . . . . . . . 14
| |
| 32 | 31 | breq1d 4663 |
. . . . . . . . . . . . 13
|
| 33 | 32 | elrab 3363 |
. . . . . . . . . . . 12
|
| 34 | 25, 30, 33 | sylanbrc 698 |
. . . . . . . . . . 11
|
| 35 | ssel 3597 |
. . . . . . . . . . 11
| |
| 36 | 34, 35 | syl5com 31 |
. . . . . . . . . 10
|
| 37 | 36 | 3expa 1265 |
. . . . . . . . 9
|
| 38 | 37 | impancom 456 |
. . . . . . . 8
|
| 39 | 38 | con3d 148 |
. . . . . . 7
|
| 40 | 39 | impancom 456 |
. . . . . 6
|
| 41 | 10, 14, 21, 40 | syl21anc 1325 |
. . . . 5
|
| 42 | bren2 7986 |
. . . . . 6
| |
| 43 | 42 | simplbi2 655 |
. . . . 5
|
| 44 | 16, 41, 43 | sylsyld 61 |
. . . 4
|
| 45 | 44 | ralrimdva 2969 |
. . 3
|
| 46 | 45 | reximdva 3017 |
. 2
|
| 47 | 8, 46 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-ac2 9285 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-rpss 6937 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-fi 8317 df-oi 8415 df-card 8765 df-ac 8939 df-cda 8990 df-fbas 19743 df-fg 19744 df-fil 21650 df-ufil 21705 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |