Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  asindmre Structured version   Visualization version   Unicode version

Theorem asindmre 33495
Description: Real part of domain of differentiability of arcsine. (Contributed by Brendan Leahy, 19-Dec-2018.)
Hypothesis
Ref Expression
dvasin.d  |-  D  =  ( CC  \  (
( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) ) )
Assertion
Ref Expression
asindmre  |-  ( D  i^i  RR )  =  ( -u 1 (,) 1 )

Proof of Theorem asindmre
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 un12 3771 . . . . 5  |-  ( (
-u 1 (,) 1
)  u.  ( ( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) ) )  =  ( ( -oo (,] -u 1
)  u.  ( (
-u 1 (,) 1
)  u.  ( 1 [,) +oo ) ) )
2 neg1rr 11125 . . . . . . . . . 10  |-  -u 1  e.  RR
32rexri 10097 . . . . . . . . 9  |-  -u 1  e.  RR*
4 1re 10039 . . . . . . . . . 10  |-  1  e.  RR
54rexri 10097 . . . . . . . . 9  |-  1  e.  RR*
6 pnfxr 10092 . . . . . . . . 9  |- +oo  e.  RR*
73, 5, 63pm3.2i 1239 . . . . . . . 8  |-  ( -u
1  e.  RR*  /\  1  e.  RR*  /\ +oo  e.  RR* )
8 neg1lt0 11127 . . . . . . . . . 10  |-  -u 1  <  0
9 0lt1 10550 . . . . . . . . . 10  |-  0  <  1
10 0re 10040 . . . . . . . . . . 11  |-  0  e.  RR
112, 10, 4lttri 10163 . . . . . . . . . 10  |-  ( (
-u 1  <  0  /\  0  <  1
)  ->  -u 1  <  1 )
128, 9, 11mp2an 708 . . . . . . . . 9  |-  -u 1  <  1
13 ltpnf 11954 . . . . . . . . . 10  |-  ( 1  e.  RR  ->  1  < +oo )
144, 13ax-mp 5 . . . . . . . . 9  |-  1  < +oo
1512, 14pm3.2i 471 . . . . . . . 8  |-  ( -u
1  <  1  /\  1  < +oo )
16 df-ioo 12179 . . . . . . . . 9  |-  (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <  y ) } )
17 df-ico 12181 . . . . . . . . 9  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
18 xrlenlt 10103 . . . . . . . . 9  |-  ( ( 1  e.  RR*  /\  w  e.  RR* )  ->  (
1  <_  w  <->  -.  w  <  1 ) )
19 xrlttr 11973 . . . . . . . . 9  |-  ( ( w  e.  RR*  /\  1  e.  RR*  /\ +oo  e.  RR* )  ->  ( (
w  <  1  /\  1  < +oo )  ->  w  < +oo ) )
20 xrltletr 11988 . . . . . . . . 9  |-  ( (
-u 1  e.  RR*  /\  1  e.  RR*  /\  w  e.  RR* )  ->  (
( -u 1  <  1  /\  1  <_  w )  ->  -u 1  <  w
) )
2116, 17, 18, 16, 19, 20ixxun 12191 . . . . . . . 8  |-  ( ( ( -u 1  e. 
RR*  /\  1  e.  RR* 
/\ +oo  e.  RR* )  /\  ( -u 1  <  1  /\  1  < +oo ) )  ->  (
( -u 1 (,) 1
)  u.  ( 1 [,) +oo ) )  =  ( -u 1 (,) +oo ) )
227, 15, 21mp2an 708 . . . . . . 7  |-  ( (
-u 1 (,) 1
)  u.  ( 1 [,) +oo ) )  =  ( -u 1 (,) +oo )
2322uneq2i 3764 . . . . . 6  |-  ( ( -oo (,] -u 1
)  u.  ( (
-u 1 (,) 1
)  u.  ( 1 [,) +oo ) ) )  =  ( ( -oo (,] -u 1
)  u.  ( -u
1 (,) +oo )
)
24 mnfxr 10096 . . . . . . . 8  |- -oo  e.  RR*
2524, 3, 63pm3.2i 1239 . . . . . . 7  |-  ( -oo  e.  RR*  /\  -u 1  e.  RR*  /\ +oo  e.  RR* )
26 mnflt 11957 . . . . . . . . 9  |-  ( -u
1  e.  RR  -> -oo 
<  -u 1 )
27 ltpnf 11954 . . . . . . . . 9  |-  ( -u
1  e.  RR  ->  -u
1  < +oo )
2826, 27jca 554 . . . . . . . 8  |-  ( -u
1  e.  RR  ->  ( -oo  <  -u 1  /\  -u 1  < +oo )
)
292, 28ax-mp 5 . . . . . . 7  |-  ( -oo  <  -u 1  /\  -u 1  < +oo )
30 df-ioc 12180 . . . . . . . 8  |-  (,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <_  y ) } )
31 xrltnle 10105 . . . . . . . 8  |-  ( (
-u 1  e.  RR*  /\  w  e.  RR* )  ->  ( -u 1  < 
w  <->  -.  w  <_  -u
1 ) )
32 xrlelttr 11987 . . . . . . . 8  |-  ( ( w  e.  RR*  /\  -u 1  e.  RR*  /\ +oo  e.  RR* )  ->  ( (
w  <_  -u 1  /\  -u 1  < +oo )  ->  w  < +oo )
)
33 xrlttr 11973 . . . . . . . 8  |-  ( ( -oo  e.  RR*  /\  -u 1  e.  RR*  /\  w  e. 
RR* )  ->  (
( -oo  <  -u 1  /\  -u 1  <  w
)  -> -oo  <  w
) )
3430, 16, 31, 16, 32, 33ixxun 12191 . . . . . . 7  |-  ( ( ( -oo  e.  RR*  /\  -u 1  e.  RR*  /\ +oo  e.  RR* )  /\  ( -oo  <  -u 1  /\  -u 1  < +oo ) )  -> 
( ( -oo (,] -u 1 )  u.  ( -u 1 (,) +oo )
)  =  ( -oo (,) +oo ) )
3525, 29, 34mp2an 708 . . . . . 6  |-  ( ( -oo (,] -u 1
)  u.  ( -u
1 (,) +oo )
)  =  ( -oo (,) +oo )
3623, 35eqtri 2644 . . . . 5  |-  ( ( -oo (,] -u 1
)  u.  ( (
-u 1 (,) 1
)  u.  ( 1 [,) +oo ) ) )  =  ( -oo (,) +oo )
37 ioomax 12248 . . . . 5  |-  ( -oo (,) +oo )  =  RR
381, 36, 373eqtri 2648 . . . 4  |-  ( (
-u 1 (,) 1
)  u.  ( ( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) ) )  =  RR
3938difeq1i 3724 . . 3  |-  ( ( ( -u 1 (,) 1 )  u.  (
( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) ) )  \  ( ( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) ) )  =  ( RR 
\  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) ) )
40 difun2 4048 . . 3  |-  ( ( ( -u 1 (,) 1 )  u.  (
( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) ) )  \  ( ( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) ) )  =  ( (
-u 1 (,) 1
)  \  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) ) )
41 ax-resscn 9993 . . . 4  |-  RR  C_  CC
42 difin2 3890 . . . 4  |-  ( RR  C_  CC  ->  ( RR  \  ( ( -oo (,] -u 1 )  u.  (
1 [,) +oo )
) )  =  ( ( CC  \  (
( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) ) )  i^i  RR ) )
4341, 42ax-mp 5 . . 3  |-  ( RR 
\  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) ) )  =  ( ( CC  \ 
( ( -oo (,] -u 1 )  u.  (
1 [,) +oo )
) )  i^i  RR )
4439, 40, 433eqtr3ri 2653 . 2  |-  ( ( CC  \  ( ( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) ) )  i^i  RR )  =  ( ( -u
1 (,) 1 ) 
\  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) ) )
45 dvasin.d . . 3  |-  D  =  ( CC  \  (
( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) ) )
4645ineq1i 3810 . 2  |-  ( D  i^i  RR )  =  ( ( CC  \ 
( ( -oo (,] -u 1 )  u.  (
1 [,) +oo )
) )  i^i  RR )
47 incom 3805 . . . . 5  |-  ( (
-u 1 (,) 1
)  i^i  ( -oo (,] -u 1 ) )  =  ( ( -oo (,] -u 1 )  i^i  ( -u 1 (,) 1 ) )
4830, 16, 31ixxdisj 12190 . . . . . 6  |-  ( ( -oo  e.  RR*  /\  -u 1  e.  RR*  /\  1  e. 
RR* )  ->  (
( -oo (,] -u 1
)  i^i  ( -u 1 (,) 1 ) )  =  (/) )
4924, 3, 5, 48mp3an 1424 . . . . 5  |-  ( ( -oo (,] -u 1
)  i^i  ( -u 1 (,) 1 ) )  =  (/)
5047, 49eqtri 2644 . . . 4  |-  ( (
-u 1 (,) 1
)  i^i  ( -oo (,] -u 1 ) )  =  (/)
5116, 17, 18ixxdisj 12190 . . . . 5  |-  ( (
-u 1  e.  RR*  /\  1  e.  RR*  /\ +oo  e.  RR* )  ->  (
( -u 1 (,) 1
)  i^i  ( 1 [,) +oo ) )  =  (/) )
523, 5, 6, 51mp3an 1424 . . . 4  |-  ( (
-u 1 (,) 1
)  i^i  ( 1 [,) +oo ) )  =  (/)
5350, 52pm3.2i 471 . . 3  |-  ( ( ( -u 1 (,) 1 )  i^i  ( -oo (,] -u 1 ) )  =  (/)  /\  (
( -u 1 (,) 1
)  i^i  ( 1 [,) +oo ) )  =  (/) )
54 un00 4011 . . . 4  |-  ( ( ( ( -u 1 (,) 1 )  i^i  ( -oo (,] -u 1 ) )  =  (/)  /\  (
( -u 1 (,) 1
)  i^i  ( 1 [,) +oo ) )  =  (/) )  <->  ( (
( -u 1 (,) 1
)  i^i  ( -oo (,] -u 1 ) )  u.  ( ( -u
1 (,) 1 )  i^i  ( 1 [,) +oo ) ) )  =  (/) )
55 indi 3873 . . . . 5  |-  ( (
-u 1 (,) 1
)  i^i  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) ) )  =  ( ( ( -u
1 (,) 1 )  i^i  ( -oo (,] -u 1 ) )  u.  ( ( -u 1 (,) 1 )  i^i  (
1 [,) +oo )
) )
5655eqeq1i 2627 . . . 4  |-  ( ( ( -u 1 (,) 1 )  i^i  (
( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) ) )  =  (/)  <->  ( (
( -u 1 (,) 1
)  i^i  ( -oo (,] -u 1 ) )  u.  ( ( -u
1 (,) 1 )  i^i  ( 1 [,) +oo ) ) )  =  (/) )
57 disj3 4021 . . . 4  |-  ( ( ( -u 1 (,) 1 )  i^i  (
( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) ) )  =  (/)  <->  ( -u 1 (,) 1 )  =  ( ( -u 1 (,) 1 )  \  (
( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) ) ) )
5854, 56, 573bitr2i 288 . . 3  |-  ( ( ( ( -u 1 (,) 1 )  i^i  ( -oo (,] -u 1 ) )  =  (/)  /\  (
( -u 1 (,) 1
)  i^i  ( 1 [,) +oo ) )  =  (/) )  <->  ( -u 1 (,) 1 )  =  ( ( -u 1 (,) 1 )  \  (
( -oo (,] -u 1
)  u.  ( 1 [,) +oo ) ) ) )
5953, 58mpbi 220 . 2  |-  ( -u
1 (,) 1 )  =  ( ( -u
1 (,) 1 ) 
\  ( ( -oo (,] -u 1 )  u.  ( 1 [,) +oo ) ) )
6044, 46, 593eqtr4i 2654 1  |-  ( D  i^i  RR )  =  ( -u 1 (,) 1 )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653  (class class class)co 6650   CCcc 9934   RRcr 9935   0cc0 9936   1c1 9937   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074    <_ cle 10075   -ucneg 10267   (,)cioo 12175   (,]cioc 12176   [,)cico 12177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-ioo 12179  df-ioc 12180  df-ico 12181
This theorem is referenced by:  dvasin  33496  dvreasin  33498  dvreacos  33499
  Copyright terms: Public domain W3C validator