MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ust0 Structured version   Visualization version   Unicode version

Theorem ust0 22023
Description: The unique uniform structure of the empty set is the empty set. Remark 3 of [BourbakiTop1] p. II.2. (Contributed by Thierry Arnoux, 15-Nov-2017.)
Assertion
Ref Expression
ust0  |-  (UnifOn `  (/) )  =  { { (/)
} }

Proof of Theorem ust0
Dummy variables  v  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0ex 4790 . . . . . . . 8  |-  (/)  e.  _V
2 isust 22007 . . . . . . . 8  |-  ( (/)  e.  _V  ->  ( u  e.  (UnifOn `  (/) )  <->  ( u  C_ 
~P ( (/)  X.  (/) )  /\  ( (/)  X.  (/) )  e.  u  /\  A. v  e.  u  ( A. w  e.  ~P  ( (/) 
X.  (/) ) ( v 
C_  w  ->  w  e.  u )  /\  A. w  e.  u  (
v  i^i  w )  e.  u  /\  (
(  _I  |`  (/) )  C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w )  C_  v
) ) ) ) )
31, 2ax-mp 5 . . . . . . 7  |-  ( u  e.  (UnifOn `  (/) )  <->  ( u  C_ 
~P ( (/)  X.  (/) )  /\  ( (/)  X.  (/) )  e.  u  /\  A. v  e.  u  ( A. w  e.  ~P  ( (/) 
X.  (/) ) ( v 
C_  w  ->  w  e.  u )  /\  A. w  e.  u  (
v  i^i  w )  e.  u  /\  (
(  _I  |`  (/) )  C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w )  C_  v
) ) ) )
43simp1bi 1076 . . . . . 6  |-  ( u  e.  (UnifOn `  (/) )  ->  u  C_  ~P ( (/)  X.  (/) ) )
5 0xp 5199 . . . . . . . 8  |-  ( (/)  X.  (/) )  =  (/)
65pweqi 4162 . . . . . . 7  |-  ~P ( (/) 
X.  (/) )  =  ~P (/)
7 pw0 4343 . . . . . . 7  |-  ~P (/)  =  { (/)
}
86, 7eqtri 2644 . . . . . 6  |-  ~P ( (/) 
X.  (/) )  =  { (/)
}
94, 8syl6sseq 3651 . . . . 5  |-  ( u  e.  (UnifOn `  (/) )  ->  u  C_  { (/) } )
10 ustbasel 22010 . . . . . . 7  |-  ( u  e.  (UnifOn `  (/) )  -> 
( (/)  X.  (/) )  e.  u )
115, 10syl5eqelr 2706 . . . . . 6  |-  ( u  e.  (UnifOn `  (/) )  ->  (/) 
e.  u )
1211snssd 4340 . . . . 5  |-  ( u  e.  (UnifOn `  (/) )  ->  { (/) }  C_  u
)
139, 12eqssd 3620 . . . 4  |-  ( u  e.  (UnifOn `  (/) )  ->  u  =  { (/) } )
14 velsn 4193 . . . 4  |-  ( u  e.  { { (/) } }  <->  u  =  { (/)
} )
1513, 14sylibr 224 . . 3  |-  ( u  e.  (UnifOn `  (/) )  ->  u  e.  { { (/) } } )
1615ssriv 3607 . 2  |-  (UnifOn `  (/) )  C_  { { (/) } }
178eqimss2i 3660 . . . 4  |-  { (/) } 
C_  ~P ( (/)  X.  (/) )
181snid 4208 . . . . 5  |-  (/)  e.  { (/)
}
195, 18eqeltri 2697 . . . 4  |-  ( (/)  X.  (/) )  e.  { (/) }
2018a1i 11 . . . . . 6  |-  ( (/)  C_  (/)  ->  (/)  e.  { (/) } )
218raleqi 3142 . . . . . . 7  |-  ( A. w  e.  ~P  ( (/) 
X.  (/) ) ( (/)  C_  w  ->  w  e.  {
(/) } )  <->  A. w  e.  { (/) }  ( (/)  C_  w  ->  w  e.  {
(/) } ) )
22 sseq2 3627 . . . . . . . . 9  |-  ( w  =  (/)  ->  ( (/)  C_  w  <->  (/)  C_  (/) ) )
23 eleq1 2689 . . . . . . . . 9  |-  ( w  =  (/)  ->  ( w  e.  { (/) }  <->  (/)  e.  { (/)
} ) )
2422, 23imbi12d 334 . . . . . . . 8  |-  ( w  =  (/)  ->  ( (
(/)  C_  w  ->  w  e.  { (/) } )  <->  ( (/)  C_  (/)  ->  (/)  e.  { (/)
} ) ) )
251, 24ralsn 4222 . . . . . . 7  |-  ( A. w  e.  { (/) }  ( (/)  C_  w  ->  w  e. 
{ (/) } )  <->  ( (/)  C_  (/)  ->  (/)  e.  { (/)
} ) )
2621, 25bitri 264 . . . . . 6  |-  ( A. w  e.  ~P  ( (/) 
X.  (/) ) ( (/)  C_  w  ->  w  e.  {
(/) } )  <->  ( (/)  C_  (/)  ->  (/)  e.  { (/)
} ) )
2720, 26mpbir 221 . . . . 5  |-  A. w  e.  ~P  ( (/)  X.  (/) ) (
(/)  C_  w  ->  w  e.  { (/) } )
28 inidm 3822 . . . . . . 7  |-  ( (/)  i^i  (/) )  =  (/)
2928, 18eqeltri 2697 . . . . . 6  |-  ( (/)  i^i  (/) )  e.  { (/) }
30 ineq2 3808 . . . . . . . 8  |-  ( w  =  (/)  ->  ( (/)  i^i  w )  =  (
(/)  i^i  (/) ) )
3130eleq1d 2686 . . . . . . 7  |-  ( w  =  (/)  ->  ( (
(/)  i^i  w )  e.  { (/) }  <->  ( (/)  i^i  (/) )  e. 
{ (/) } ) )
321, 31ralsn 4222 . . . . . 6  |-  ( A. w  e.  { (/) }  ( (/) 
i^i  w )  e. 
{ (/) }  <->  ( (/)  i^i  (/) )  e. 
{ (/) } )
3329, 32mpbir 221 . . . . 5  |-  A. w  e.  { (/) }  ( (/)  i^i  w )  e.  { (/)
}
34 res0 5400 . . . . . . 7  |-  (  _I  |`  (/) )  =  (/)
3534eqimssi 3659 . . . . . 6  |-  (  _I  |`  (/) )  C_  (/)
36 cnv0 5535 . . . . . . 7  |-  `' (/)  =  (/)
3736, 18eqeltri 2697 . . . . . 6  |-  `' (/)  e.  { (/) }
38 0trrel 13720 . . . . . . 7  |-  ( (/)  o.  (/) )  C_  (/)
39 id 22 . . . . . . . . . 10  |-  ( w  =  (/)  ->  w  =  (/) )
4039, 39coeq12d 5286 . . . . . . . . 9  |-  ( w  =  (/)  ->  ( w  o.  w )  =  ( (/)  o.  (/) ) )
4140sseq1d 3632 . . . . . . . 8  |-  ( w  =  (/)  ->  ( ( w  o.  w ) 
C_  (/)  <->  ( (/)  o.  (/) )  C_  (/) ) )
421, 41rexsn 4223 . . . . . . 7  |-  ( E. w  e.  { (/) }  ( w  o.  w
)  C_  (/)  <->  ( (/)  o.  (/) )  C_  (/) )
4338, 42mpbir 221 . . . . . 6  |-  E. w  e.  { (/) }  ( w  o.  w )  C_  (/)
4435, 37, 433pm3.2i 1239 . . . . 5  |-  ( (  _I  |`  (/) )  C_  (/) 
/\  `' (/)  e.  { (/)
}  /\  E. w  e.  { (/) }  ( w  o.  w )  C_  (/) )
45 sseq1 3626 . . . . . . . . 9  |-  ( v  =  (/)  ->  ( v 
C_  w  <->  (/)  C_  w
) )
4645imbi1d 331 . . . . . . . 8  |-  ( v  =  (/)  ->  ( ( v  C_  w  ->  w  e.  { (/) } )  <-> 
( (/)  C_  w  ->  w  e.  { (/) } ) ) )
4746ralbidv 2986 . . . . . . 7  |-  ( v  =  (/)  ->  ( A. w  e.  ~P  ( (/) 
X.  (/) ) ( v 
C_  w  ->  w  e.  { (/) } )  <->  A. w  e.  ~P  ( (/)  X.  (/) ) (
(/)  C_  w  ->  w  e.  { (/) } ) ) )
48 ineq1 3807 . . . . . . . . 9  |-  ( v  =  (/)  ->  ( v  i^i  w )  =  ( (/)  i^i  w
) )
4948eleq1d 2686 . . . . . . . 8  |-  ( v  =  (/)  ->  ( ( v  i^i  w )  e.  { (/) }  <->  ( (/)  i^i  w
)  e.  { (/) } ) )
5049ralbidv 2986 . . . . . . 7  |-  ( v  =  (/)  ->  ( A. w  e.  { (/) }  (
v  i^i  w )  e.  { (/) }  <->  A. w  e.  { (/) }  ( (/)  i^i  w )  e.  { (/)
} ) )
51 sseq2 3627 . . . . . . . 8  |-  ( v  =  (/)  ->  ( (  _I  |`  (/) )  C_  v 
<->  (  _I  |`  (/) )  C_  (/) ) )
52 cnveq 5296 . . . . . . . . 9  |-  ( v  =  (/)  ->  `' v  =  `' (/) )
5352eleq1d 2686 . . . . . . . 8  |-  ( v  =  (/)  ->  ( `' v  e.  { (/) }  <->  `' (/)  e.  { (/) } ) )
54 sseq2 3627 . . . . . . . . 9  |-  ( v  =  (/)  ->  ( ( w  o.  w ) 
C_  v  <->  ( w  o.  w )  C_  (/) ) )
5554rexbidv 3052 . . . . . . . 8  |-  ( v  =  (/)  ->  ( E. w  e.  { (/) }  ( w  o.  w
)  C_  v  <->  E. w  e.  { (/) }  ( w  o.  w )  C_  (/) ) )
5651, 53, 553anbi123d 1399 . . . . . . 7  |-  ( v  =  (/)  ->  ( ( (  _I  |`  (/) )  C_  v  /\  `' v  e. 
{ (/) }  /\  E. w  e.  { (/) }  (
w  o.  w ) 
C_  v )  <->  ( (  _I  |`  (/) )  C_  (/)  /\  `' (/) 
e.  { (/) }  /\  E. w  e.  { (/) }  ( w  o.  w
)  C_  (/) ) ) )
5747, 50, 563anbi123d 1399 . . . . . 6  |-  ( v  =  (/)  ->  ( ( A. w  e.  ~P  ( (/)  X.  (/) ) ( v  C_  w  ->  w  e.  { (/) } )  /\  A. w  e. 
{ (/) }  ( v  i^i  w )  e. 
{ (/) }  /\  (
(  _I  |`  (/) )  C_  v  /\  `' v  e. 
{ (/) }  /\  E. w  e.  { (/) }  (
w  o.  w ) 
C_  v ) )  <-> 
( A. w  e. 
~P  ( (/)  X.  (/) ) (
(/)  C_  w  ->  w  e.  { (/) } )  /\  A. w  e.  { (/) }  ( (/)  i^i  w
)  e.  { (/) }  /\  ( (  _I  |`  (/) )  C_  (/)  /\  `' (/) 
e.  { (/) }  /\  E. w  e.  { (/) }  ( w  o.  w
)  C_  (/) ) ) ) )
581, 57ralsn 4222 . . . . 5  |-  ( A. v  e.  { (/) }  ( A. w  e.  ~P  ( (/)  X.  (/) ) ( v  C_  w  ->  w  e.  { (/) } )  /\  A. w  e. 
{ (/) }  ( v  i^i  w )  e. 
{ (/) }  /\  (
(  _I  |`  (/) )  C_  v  /\  `' v  e. 
{ (/) }  /\  E. w  e.  { (/) }  (
w  o.  w ) 
C_  v ) )  <-> 
( A. w  e. 
~P  ( (/)  X.  (/) ) (
(/)  C_  w  ->  w  e.  { (/) } )  /\  A. w  e.  { (/) }  ( (/)  i^i  w
)  e.  { (/) }  /\  ( (  _I  |`  (/) )  C_  (/)  /\  `' (/) 
e.  { (/) }  /\  E. w  e.  { (/) }  ( w  o.  w
)  C_  (/) ) ) )
5927, 33, 44, 58mpbir3an 1244 . . . 4  |-  A. v  e.  { (/) }  ( A. w  e.  ~P  ( (/) 
X.  (/) ) ( v 
C_  w  ->  w  e.  { (/) } )  /\  A. w  e.  { (/) }  ( v  i^i  w
)  e.  { (/) }  /\  ( (  _I  |`  (/) )  C_  v  /\  `' v  e.  { (/) }  /\  E. w  e. 
{ (/) }  ( w  o.  w )  C_  v ) )
60 isust 22007 . . . . 5  |-  ( (/)  e.  _V  ->  ( { (/)
}  e.  (UnifOn `  (/) )  <->  ( { (/) } 
C_  ~P ( (/)  X.  (/) )  /\  ( (/)  X.  (/) )  e. 
{ (/) }  /\  A. v  e.  { (/) }  ( A. w  e.  ~P  ( (/)  X.  (/) ) ( v  C_  w  ->  w  e.  { (/) } )  /\  A. w  e. 
{ (/) }  ( v  i^i  w )  e. 
{ (/) }  /\  (
(  _I  |`  (/) )  C_  v  /\  `' v  e. 
{ (/) }  /\  E. w  e.  { (/) }  (
w  o.  w ) 
C_  v ) ) ) ) )
611, 60ax-mp 5 . . . 4  |-  ( {
(/) }  e.  (UnifOn `  (/) )  <->  ( { (/) } 
C_  ~P ( (/)  X.  (/) )  /\  ( (/)  X.  (/) )  e. 
{ (/) }  /\  A. v  e.  { (/) }  ( A. w  e.  ~P  ( (/)  X.  (/) ) ( v  C_  w  ->  w  e.  { (/) } )  /\  A. w  e. 
{ (/) }  ( v  i^i  w )  e. 
{ (/) }  /\  (
(  _I  |`  (/) )  C_  v  /\  `' v  e. 
{ (/) }  /\  E. w  e.  { (/) }  (
w  o.  w ) 
C_  v ) ) ) )
6217, 19, 59, 61mpbir3an 1244 . . 3  |-  { (/) }  e.  (UnifOn `  (/) )
63 snssi 4339 . . 3  |-  ( {
(/) }  e.  (UnifOn `  (/) )  ->  { { (/)
} }  C_  (UnifOn `  (/) ) )
6462, 63ax-mp 5 . 2  |-  { { (/)
} }  C_  (UnifOn `  (/) )
6516, 64eqssi 3619 1  |-  (UnifOn `  (/) )  =  { { (/)
} }
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177    _I cid 5023    X. cxp 5112   `'ccnv 5113    |` cres 5116    o. ccom 5118   ` cfv 5888  UnifOncust 22003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-ust 22004
This theorem is referenced by:  isusp  22065
  Copyright terms: Public domain W3C validator