MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop1 Structured version   Visualization version   Unicode version

Theorem ustuqtop1 22045
Description: Lemma for ustuqtop 22050, similar to ssnei2 20920. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1  |-  N  =  ( p  e.  X  |->  ran  ( v  e.  U  |->  ( v " { p } ) ) )
Assertion
Ref Expression
ustuqtop1  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  a  C_  b  /\  b  C_  X
)  /\  a  e.  ( N `  p ) )  ->  b  e.  ( N `  p ) )
Distinct variable groups:    v, p, U    X, p, v    a,
b, p, N    v,
a, U, b    X, a, b
Allowed substitution hint:    N( v)

Proof of Theorem ustuqtop1
Dummy variables  w  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl1l 1112 . . . . . 6  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  a  C_  b  /\  b  C_  X
)  /\  ( a  e.  ( N `  p
)  /\  w  e.  U  /\  a  =  ( w " { p } ) ) )  ->  U  e.  (UnifOn `  X ) )
213anassrs 1290 . . . . 5  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  C_  b  /\  b  C_  X )  /\  a  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  U  e.  (UnifOn `  X ) )
3 simplr 792 . . . . 5  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  C_  b  /\  b  C_  X )  /\  a  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  w  e.  U )
4 ustssxp 22008 . . . . . . 7  |-  ( ( U  e.  (UnifOn `  X )  /\  w  e.  U )  ->  w  C_  ( X  X.  X
) )
52, 3, 4syl2anc 693 . . . . . 6  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  C_  b  /\  b  C_  X )  /\  a  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  w  C_  ( X  X.  X ) )
6 simpl1r 1113 . . . . . . . . 9  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  a  C_  b  /\  b  C_  X
)  /\  ( a  e.  ( N `  p
)  /\  w  e.  U  /\  a  =  ( w " { p } ) ) )  ->  p  e.  X
)
763anassrs 1290 . . . . . . . 8  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  C_  b  /\  b  C_  X )  /\  a  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  p  e.  X )
87snssd 4340 . . . . . . 7  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  C_  b  /\  b  C_  X )  /\  a  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  { p }  C_  X )
9 simpl3 1066 . . . . . . . 8  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  a  C_  b  /\  b  C_  X
)  /\  ( a  e.  ( N `  p
)  /\  w  e.  U  /\  a  =  ( w " { p } ) ) )  ->  b  C_  X
)
1093anassrs 1290 . . . . . . 7  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  C_  b  /\  b  C_  X )  /\  a  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  b  C_  X )
11 xpss12 5225 . . . . . . 7  |-  ( ( { p }  C_  X  /\  b  C_  X
)  ->  ( {
p }  X.  b
)  C_  ( X  X.  X ) )
128, 10, 11syl2anc 693 . . . . . 6  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  C_  b  /\  b  C_  X )  /\  a  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  ( {
p }  X.  b
)  C_  ( X  X.  X ) )
135, 12unssd 3789 . . . . 5  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  C_  b  /\  b  C_  X )  /\  a  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  ( w  u.  ( { p }  X.  b ) )  C_  ( X  X.  X
) )
14 ssun1 3776 . . . . . 6  |-  w  C_  ( w  u.  ( { p }  X.  b ) )
1514a1i 11 . . . . 5  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  C_  b  /\  b  C_  X )  /\  a  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  w  C_  (
w  u.  ( { p }  X.  b
) ) )
16 ustssel 22009 . . . . . 6  |-  ( ( U  e.  (UnifOn `  X )  /\  w  e.  U  /\  (
w  u.  ( { p }  X.  b
) )  C_  ( X  X.  X ) )  ->  ( w  C_  ( w  u.  ( { p }  X.  b ) )  -> 
( w  u.  ( { p }  X.  b ) )  e.  U ) )
1716imp 445 . . . . 5  |-  ( ( ( U  e.  (UnifOn `  X )  /\  w  e.  U  /\  (
w  u.  ( { p }  X.  b
) )  C_  ( X  X.  X ) )  /\  w  C_  (
w  u.  ( { p }  X.  b
) ) )  -> 
( w  u.  ( { p }  X.  b ) )  e.  U )
182, 3, 13, 15, 17syl31anc 1329 . . . 4  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  C_  b  /\  b  C_  X )  /\  a  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  ( w  u.  ( { p }  X.  b ) )  e.  U )
19 simpl2 1065 . . . . . 6  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  a  C_  b  /\  b  C_  X
)  /\  ( a  e.  ( N `  p
)  /\  w  e.  U  /\  a  =  ( w " { p } ) ) )  ->  a  C_  b
)
20193anassrs 1290 . . . . 5  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  C_  b  /\  b  C_  X )  /\  a  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  a  C_  b )
21 ssequn1 3783 . . . . . . 7  |-  ( a 
C_  b  <->  ( a  u.  b )  =  b )
2221biimpi 206 . . . . . 6  |-  ( a 
C_  b  ->  (
a  u.  b )  =  b )
23 id 22 . . . . . . . 8  |-  ( a  =  ( w " { p } )  ->  a  =  ( w " { p } ) )
24 inidm 3822 . . . . . . . . . . 11  |-  ( { p }  i^i  {
p } )  =  { p }
25 vex 3203 . . . . . . . . . . . 12  |-  p  e. 
_V
2625snnz 4309 . . . . . . . . . . 11  |-  { p }  =/=  (/)
2724, 26eqnetri 2864 . . . . . . . . . 10  |-  ( { p }  i^i  {
p } )  =/=  (/)
28 xpima2 5578 . . . . . . . . . 10  |-  ( ( { p }  i^i  { p } )  =/=  (/)  ->  ( ( { p }  X.  b
) " { p } )  =  b )
2927, 28mp1i 13 . . . . . . . . 9  |-  ( a  =  ( w " { p } )  ->  ( ( { p }  X.  b
) " { p } )  =  b )
3029eqcomd 2628 . . . . . . . 8  |-  ( a  =  ( w " { p } )  ->  b  =  ( ( { p }  X.  b ) " {
p } ) )
3123, 30uneq12d 3768 . . . . . . 7  |-  ( a  =  ( w " { p } )  ->  ( a  u.  b )  =  ( ( w " {
p } )  u.  ( ( { p }  X.  b ) " { p } ) ) )
32 imaundir 5546 . . . . . . 7  |-  ( ( w  u.  ( { p }  X.  b
) ) " {
p } )  =  ( ( w " { p } )  u.  ( ( { p }  X.  b
) " { p } ) )
3331, 32syl6eqr 2674 . . . . . 6  |-  ( a  =  ( w " { p } )  ->  ( a  u.  b )  =  ( ( w  u.  ( { p }  X.  b ) ) " { p } ) )
3422, 33sylan9req 2677 . . . . 5  |-  ( ( a  C_  b  /\  a  =  ( w " { p } ) )  ->  b  =  ( ( w  u.  ( { p }  X.  b ) ) " { p } ) )
3520, 34sylancom 701 . . . 4  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  C_  b  /\  b  C_  X )  /\  a  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  b  =  ( ( w  u.  ( { p }  X.  b ) ) " { p } ) )
36 imaeq1 5461 . . . . . 6  |-  ( u  =  ( w  u.  ( { p }  X.  b ) )  -> 
( u " {
p } )  =  ( ( w  u.  ( { p }  X.  b ) ) " { p } ) )
3736eqeq2d 2632 . . . . 5  |-  ( u  =  ( w  u.  ( { p }  X.  b ) )  -> 
( b  =  ( u " { p } )  <->  b  =  ( ( w  u.  ( { p }  X.  b ) ) " { p } ) ) )
3837rspcev 3309 . . . 4  |-  ( ( ( w  u.  ( { p }  X.  b ) )  e.  U  /\  b  =  ( ( w  u.  ( { p }  X.  b ) ) " { p } ) )  ->  E. u  e.  U  b  =  ( u " {
p } ) )
3918, 35, 38syl2anc 693 . . 3  |-  ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  C_  b  /\  b  C_  X )  /\  a  e.  ( N `  p
) )  /\  w  e.  U )  /\  a  =  ( w " { p } ) )  ->  E. u  e.  U  b  =  ( u " {
p } ) )
40 vex 3203 . . . . . 6  |-  a  e. 
_V
41 utopustuq.1 . . . . . . 7  |-  N  =  ( p  e.  X  |->  ran  ( v  e.  U  |->  ( v " { p } ) ) )
4241ustuqtoplem 22043 . . . . . 6  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  e.  _V )  ->  (
a  e.  ( N `
 p )  <->  E. w  e.  U  a  =  ( w " {
p } ) ) )
4340, 42mpan2 707 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  (
a  e.  ( N `
 p )  <->  E. w  e.  U  a  =  ( w " {
p } ) ) )
4443biimpa 501 . . . 4  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  ->  E. w  e.  U  a  =  ( w " {
p } ) )
45443ad2antl1 1223 . . 3  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  a  C_  b  /\  b  C_  X
)  /\  a  e.  ( N `  p ) )  ->  E. w  e.  U  a  =  ( w " {
p } ) )
4639, 45r19.29a 3078 . 2  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  a  C_  b  /\  b  C_  X
)  /\  a  e.  ( N `  p ) )  ->  E. u  e.  U  b  =  ( u " {
p } ) )
47 vex 3203 . . . . 5  |-  b  e. 
_V
4841ustuqtoplem 22043 . . . . 5  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  b  e.  _V )  ->  (
b  e.  ( N `
 p )  <->  E. u  e.  U  b  =  ( u " {
p } ) ) )
4947, 48mpan2 707 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  (
b  e.  ( N `
 p )  <->  E. u  e.  U  b  =  ( u " {
p } ) ) )
50493ad2ant1 1082 . . 3  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  C_  b  /\  b  C_  X )  ->  (
b  e.  ( N `
 p )  <->  E. u  e.  U  b  =  ( u " {
p } ) ) )
5150adantr 481 . 2  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  a  C_  b  /\  b  C_  X
)  /\  a  e.  ( N `  p ) )  ->  ( b  e.  ( N `  p
)  <->  E. u  e.  U  b  =  ( u " { p } ) ) )
5246, 51mpbird 247 1  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  a  C_  b  /\  b  C_  X
)  /\  a  e.  ( N `  p ) )  ->  b  e.  ( N `  p ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177    |-> cmpt 4729    X. cxp 5112   ran crn 5115   "cima 5117   ` cfv 5888  UnifOncust 22003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ust 22004
This theorem is referenced by:  ustuqtop4  22048  ustuqtop  22050  utopsnneiplem  22051
  Copyright terms: Public domain W3C validator