MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzrest Structured version   Visualization version   Unicode version

Theorem uzrest 21701
Description: The restriction of the set of upper sets of integers to an upper set of integers is the set of upper sets of integers based at a point above the cutoff. (Contributed by Mario Carneiro, 13-Oct-2015.)
Hypothesis
Ref Expression
uzfbas.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
uzrest  |-  ( M  e.  ZZ  ->  ( ran  ZZ>=t  Z )  =  (
ZZ>= " Z ) )

Proof of Theorem uzrest
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 11386 . . . . . 6  |-  ZZ  e.  _V
21pwex 4848 . . . . 5  |-  ~P ZZ  e.  _V
3 uzf 11690 . . . . . 6  |-  ZZ>= : ZZ --> ~P ZZ
4 frn 6053 . . . . . 6  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ran  ZZ>=  C_  ~P ZZ )
53, 4ax-mp 5 . . . . 5  |-  ran  ZZ>=  C_  ~P ZZ
62, 5ssexi 4803 . . . 4  |-  ran  ZZ>=  e. 
_V
7 uzfbas.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
8 fvex 6201 . . . . 5  |-  ( ZZ>= `  M )  e.  _V
97, 8eqeltri 2697 . . . 4  |-  Z  e. 
_V
10 restval 16087 . . . 4  |-  ( ( ran  ZZ>=  e.  _V  /\  Z  e.  _V )  ->  ( ran  ZZ>=t  Z )  =  ran  ( x  e.  ran  ZZ>=  |->  ( x  i^i  Z ) ) )
116, 9, 10mp2an 708 . . 3  |-  ( ran  ZZ>=t  Z )  =  ran  (
x  e.  ran  ZZ>=  |->  ( x  i^i  Z ) )
127ineq2i 3811 . . . . . . . . 9  |-  ( (
ZZ>= `  y )  i^i 
Z )  =  ( ( ZZ>= `  y )  i^i  ( ZZ>= `  M )
)
13 uzin 11720 . . . . . . . . . 10  |-  ( ( y  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( ZZ>= `  y
)  i^i  ( ZZ>= `  M ) )  =  ( ZZ>= `  if (
y  <_  M ,  M ,  y )
) )
1413ancoms 469 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( ZZ>= `  y
)  i^i  ( ZZ>= `  M ) )  =  ( ZZ>= `  if (
y  <_  M ,  M ,  y )
) )
1512, 14syl5eq 2668 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( ZZ>= `  y
)  i^i  Z )  =  ( ZZ>= `  if ( y  <_  M ,  M ,  y ) ) )
16 ffn 6045 . . . . . . . . . . 11  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
173, 16ax-mp 5 . . . . . . . . . 10  |-  ZZ>=  Fn  ZZ
1817a1i 11 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ )  -> 
ZZ>=  Fn  ZZ )
19 uzssz 11707 . . . . . . . . . . 11  |-  ( ZZ>= `  M )  C_  ZZ
207, 19eqsstri 3635 . . . . . . . . . 10  |-  Z  C_  ZZ
2120a1i 11 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ )  ->  Z  C_  ZZ )
22 inss2 3834 . . . . . . . . . 10  |-  ( (
ZZ>= `  y )  i^i 
Z )  C_  Z
23 ifcl 4130 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ )  ->  if ( y  <_  M ,  M , 
y )  e.  ZZ )
24 uzid 11702 . . . . . . . . . . . 12  |-  ( if ( y  <_  M ,  M ,  y )  e.  ZZ  ->  if ( y  <_  M ,  M ,  y )  e.  ( ZZ>= `  if ( y  <_  M ,  M ,  y ) ) )
2523, 24syl 17 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ )  ->  if ( y  <_  M ,  M , 
y )  e.  (
ZZ>= `  if ( y  <_  M ,  M ,  y ) ) )
2625, 15eleqtrrd 2704 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ )  ->  if ( y  <_  M ,  M , 
y )  e.  ( ( ZZ>= `  y )  i^i  Z ) )
2722, 26sseldi 3601 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ )  ->  if ( y  <_  M ,  M , 
y )  e.  Z
)
28 fnfvima 6496 . . . . . . . . 9  |-  ( (
ZZ>=  Fn  ZZ  /\  Z  C_  ZZ  /\  if ( y  <_  M ,  M ,  y )  e.  Z )  ->  ( ZZ>=
`  if ( y  <_  M ,  M ,  y ) )  e.  ( ZZ>= " Z
) )
2918, 21, 27, 28syl3anc 1326 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ )  ->  ( ZZ>= `  if (
y  <_  M ,  M ,  y )
)  e.  ( ZZ>= " Z ) )
3015, 29eqeltrd 2701 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  y  e.  ZZ )  ->  ( ( ZZ>= `  y
)  i^i  Z )  e.  ( ZZ>= " Z ) )
3130ralrimiva 2966 . . . . . 6  |-  ( M  e.  ZZ  ->  A. y  e.  ZZ  ( ( ZZ>= `  y )  i^i  Z
)  e.  ( ZZ>= " Z ) )
32 ineq1 3807 . . . . . . . . 9  |-  ( x  =  ( ZZ>= `  y
)  ->  ( x  i^i  Z )  =  ( ( ZZ>= `  y )  i^i  Z ) )
3332eleq1d 2686 . . . . . . . 8  |-  ( x  =  ( ZZ>= `  y
)  ->  ( (
x  i^i  Z )  e.  ( ZZ>= " Z )  <->  ( ( ZZ>=
`  y )  i^i 
Z )  e.  (
ZZ>= " Z ) ) )
3433ralrn 6362 . . . . . . 7  |-  ( ZZ>=  Fn  ZZ  ->  ( A. x  e.  ran  ZZ>= ( x  i^i  Z )  e.  ( ZZ>= " Z )  <->  A. y  e.  ZZ  ( ( ZZ>= `  y )  i^i  Z
)  e.  ( ZZ>= " Z ) ) )
3517, 34ax-mp 5 . . . . . 6  |-  ( A. x  e.  ran  ZZ>= ( x  i^i  Z )  e.  ( ZZ>= " Z )  <->  A. y  e.  ZZ  ( ( ZZ>= `  y )  i^i  Z
)  e.  ( ZZ>= " Z ) )
3631, 35sylibr 224 . . . . 5  |-  ( M  e.  ZZ  ->  A. x  e.  ran  ZZ>= ( x  i^i 
Z )  e.  (
ZZ>= " Z ) )
37 eqid 2622 . . . . . 6  |-  ( x  e.  ran  ZZ>=  |->  ( x  i^i  Z ) )  =  ( x  e. 
ran  ZZ>=  |->  ( x  i^i 
Z ) )
3837fmpt 6381 . . . . 5  |-  ( A. x  e.  ran  ZZ>= ( x  i^i  Z )  e.  ( ZZ>= " Z )  <->  ( x  e.  ran  ZZ>=  |->  ( x  i^i 
Z ) ) : ran  ZZ>= --> ( ZZ>= " Z
) )
3936, 38sylib 208 . . . 4  |-  ( M  e.  ZZ  ->  (
x  e.  ran  ZZ>=  |->  ( x  i^i  Z ) ) : ran  ZZ>= --> (
ZZ>= " Z ) )
40 frn 6053 . . . 4  |-  ( ( x  e.  ran  ZZ>=  |->  ( x  i^i  Z ) ) : ran  ZZ>= --> (
ZZ>= " Z )  ->  ran  ( x  e.  ran  ZZ>=  |->  ( x  i^i  Z ) )  C_  ( ZZ>= " Z ) )
4139, 40syl 17 . . 3  |-  ( M  e.  ZZ  ->  ran  ( x  e.  ran  ZZ>=  |->  ( x  i^i  Z ) )  C_  ( ZZ>= " Z ) )
4211, 41syl5eqss 3649 . 2  |-  ( M  e.  ZZ  ->  ( ran  ZZ>=t  Z )  C_  ( ZZ>=
" Z ) )
437uztrn2 11705 . . . . . . . . 9  |-  ( ( x  e.  Z  /\  y  e.  ( ZZ>= `  x ) )  -> 
y  e.  Z )
4443ex 450 . . . . . . . 8  |-  ( x  e.  Z  ->  (
y  e.  ( ZZ>= `  x )  ->  y  e.  Z ) )
4544ssrdv 3609 . . . . . . 7  |-  ( x  e.  Z  ->  ( ZZ>=
`  x )  C_  Z )
4645adantl 482 . . . . . 6  |-  ( ( M  e.  ZZ  /\  x  e.  Z )  ->  ( ZZ>= `  x )  C_  Z )
47 df-ss 3588 . . . . . 6  |-  ( (
ZZ>= `  x )  C_  Z 
<->  ( ( ZZ>= `  x
)  i^i  Z )  =  ( ZZ>= `  x
) )
4846, 47sylib 208 . . . . 5  |-  ( ( M  e.  ZZ  /\  x  e.  Z )  ->  ( ( ZZ>= `  x
)  i^i  Z )  =  ( ZZ>= `  x
) )
496a1i 11 . . . . . 6  |-  ( ( M  e.  ZZ  /\  x  e.  Z )  ->  ran  ZZ>=  e.  _V )
509a1i 11 . . . . . 6  |-  ( ( M  e.  ZZ  /\  x  e.  Z )  ->  Z  e.  _V )
5120sseli 3599 . . . . . . . 8  |-  ( x  e.  Z  ->  x  e.  ZZ )
5251adantl 482 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  x  e.  Z )  ->  x  e.  ZZ )
53 fnfvelrn 6356 . . . . . . 7  |-  ( (
ZZ>=  Fn  ZZ  /\  x  e.  ZZ )  ->  ( ZZ>=
`  x )  e. 
ran  ZZ>= )
5417, 52, 53sylancr 695 . . . . . 6  |-  ( ( M  e.  ZZ  /\  x  e.  Z )  ->  ( ZZ>= `  x )  e.  ran  ZZ>= )
55 elrestr 16089 . . . . . 6  |-  ( ( ran  ZZ>=  e.  _V  /\  Z  e.  _V  /\  ( ZZ>= `  x )  e.  ran  ZZ>= )  ->  ( ( ZZ>= `  x )  i^i  Z
)  e.  ( ran  ZZ>=t  Z ) )
5649, 50, 54, 55syl3anc 1326 . . . . 5  |-  ( ( M  e.  ZZ  /\  x  e.  Z )  ->  ( ( ZZ>= `  x
)  i^i  Z )  e.  ( ran  ZZ>=t  Z ) )
5748, 56eqeltrrd 2702 . . . 4  |-  ( ( M  e.  ZZ  /\  x  e.  Z )  ->  ( ZZ>= `  x )  e.  ( ran  ZZ>=t  Z ) )
5857ralrimiva 2966 . . 3  |-  ( M  e.  ZZ  ->  A. x  e.  Z  ( ZZ>= `  x )  e.  ( ran  ZZ>=t  Z ) )
59 ffun 6048 . . . . 5  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  Fun  ZZ>= )
603, 59ax-mp 5 . . . 4  |-  Fun  ZZ>=
613fdmi 6052 . . . . 5  |-  dom  ZZ>=  =  ZZ
6220, 61sseqtr4i 3638 . . . 4  |-  Z  C_  dom  ZZ>=
63 funimass4 6247 . . . 4  |-  ( ( Fun  ZZ>=  /\  Z  C_  dom  ZZ>= )  ->  ( ( ZZ>= " Z )  C_  ( ran  ZZ>=t  Z )  <->  A. x  e.  Z  ( ZZ>= `  x )  e.  ( ran  ZZ>=t  Z ) ) )
6460, 62, 63mp2an 708 . . 3  |-  ( (
ZZ>= " Z )  C_  ( ran  ZZ>=t  Z )  <->  A. x  e.  Z  ( ZZ>= `  x )  e.  ( ran  ZZ>=t  Z ) )
6558, 64sylibr 224 . 2  |-  ( M  e.  ZZ  ->  ( ZZ>=
" Z )  C_  ( ran  ZZ>=t  Z ) )
6642, 65eqssd 3620 1  |-  ( M  e.  ZZ  ->  ( ran  ZZ>=t  Z )  =  (
ZZ>= " Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ifcif 4086   ~Pcpw 4158   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    <_ cle 10075   ZZcz 11377   ZZ>=cuz 11687   ↾t crest 16081
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688  df-rest 16083
This theorem is referenced by:  uzfbas  21702
  Copyright terms: Public domain W3C validator