| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzrest | Structured version Visualization version Unicode version | ||
| Description: The restriction of the set of upper sets of integers to an upper set of integers is the set of upper sets of integers based at a point above the cutoff. (Contributed by Mario Carneiro, 13-Oct-2015.) |
| Ref | Expression |
|---|---|
| uzfbas.1 |
|
| Ref | Expression |
|---|---|
| uzrest |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zex 11386 |
. . . . . 6
| |
| 2 | 1 | pwex 4848 |
. . . . 5
|
| 3 | uzf 11690 |
. . . . . 6
| |
| 4 | frn 6053 |
. . . . . 6
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . 5
|
| 6 | 2, 5 | ssexi 4803 |
. . . 4
|
| 7 | uzfbas.1 |
. . . . 5
| |
| 8 | fvex 6201 |
. . . . 5
| |
| 9 | 7, 8 | eqeltri 2697 |
. . . 4
|
| 10 | restval 16087 |
. . . 4
| |
| 11 | 6, 9, 10 | mp2an 708 |
. . 3
|
| 12 | 7 | ineq2i 3811 |
. . . . . . . . 9
|
| 13 | uzin 11720 |
. . . . . . . . . 10
| |
| 14 | 13 | ancoms 469 |
. . . . . . . . 9
|
| 15 | 12, 14 | syl5eq 2668 |
. . . . . . . 8
|
| 16 | ffn 6045 |
. . . . . . . . . . 11
| |
| 17 | 3, 16 | ax-mp 5 |
. . . . . . . . . 10
|
| 18 | 17 | a1i 11 |
. . . . . . . . 9
|
| 19 | uzssz 11707 |
. . . . . . . . . . 11
| |
| 20 | 7, 19 | eqsstri 3635 |
. . . . . . . . . 10
|
| 21 | 20 | a1i 11 |
. . . . . . . . 9
|
| 22 | inss2 3834 |
. . . . . . . . . 10
| |
| 23 | ifcl 4130 |
. . . . . . . . . . . 12
| |
| 24 | uzid 11702 |
. . . . . . . . . . . 12
| |
| 25 | 23, 24 | syl 17 |
. . . . . . . . . . 11
|
| 26 | 25, 15 | eleqtrrd 2704 |
. . . . . . . . . 10
|
| 27 | 22, 26 | sseldi 3601 |
. . . . . . . . 9
|
| 28 | fnfvima 6496 |
. . . . . . . . 9
| |
| 29 | 18, 21, 27, 28 | syl3anc 1326 |
. . . . . . . 8
|
| 30 | 15, 29 | eqeltrd 2701 |
. . . . . . 7
|
| 31 | 30 | ralrimiva 2966 |
. . . . . 6
|
| 32 | ineq1 3807 |
. . . . . . . . 9
| |
| 33 | 32 | eleq1d 2686 |
. . . . . . . 8
|
| 34 | 33 | ralrn 6362 |
. . . . . . 7
|
| 35 | 17, 34 | ax-mp 5 |
. . . . . 6
|
| 36 | 31, 35 | sylibr 224 |
. . . . 5
|
| 37 | eqid 2622 |
. . . . . 6
| |
| 38 | 37 | fmpt 6381 |
. . . . 5
|
| 39 | 36, 38 | sylib 208 |
. . . 4
|
| 40 | frn 6053 |
. . . 4
| |
| 41 | 39, 40 | syl 17 |
. . 3
|
| 42 | 11, 41 | syl5eqss 3649 |
. 2
|
| 43 | 7 | uztrn2 11705 |
. . . . . . . . 9
|
| 44 | 43 | ex 450 |
. . . . . . . 8
|
| 45 | 44 | ssrdv 3609 |
. . . . . . 7
|
| 46 | 45 | adantl 482 |
. . . . . 6
|
| 47 | df-ss 3588 |
. . . . . 6
| |
| 48 | 46, 47 | sylib 208 |
. . . . 5
|
| 49 | 6 | a1i 11 |
. . . . . 6
|
| 50 | 9 | a1i 11 |
. . . . . 6
|
| 51 | 20 | sseli 3599 |
. . . . . . . 8
|
| 52 | 51 | adantl 482 |
. . . . . . 7
|
| 53 | fnfvelrn 6356 |
. . . . . . 7
| |
| 54 | 17, 52, 53 | sylancr 695 |
. . . . . 6
|
| 55 | elrestr 16089 |
. . . . . 6
| |
| 56 | 49, 50, 54, 55 | syl3anc 1326 |
. . . . 5
|
| 57 | 48, 56 | eqeltrrd 2702 |
. . . 4
|
| 58 | 57 | ralrimiva 2966 |
. . 3
|
| 59 | ffun 6048 |
. . . . 5
| |
| 60 | 3, 59 | ax-mp 5 |
. . . 4
|
| 61 | 3 | fdmi 6052 |
. . . . 5
|
| 62 | 20, 61 | sseqtr4i 3638 |
. . . 4
|
| 63 | funimass4 6247 |
. . . 4
| |
| 64 | 60, 62, 63 | mp2an 708 |
. . 3
|
| 65 | 58, 64 | sylibr 224 |
. 2
|
| 66 | 42, 65 | eqssd 3620 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-neg 10269 df-z 11378 df-uz 11688 df-rest 16083 |
| This theorem is referenced by: uzfbas 21702 |
| Copyright terms: Public domain | W3C validator |