MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfbas Structured version   Visualization version   Unicode version

Theorem zfbas 21700
Description: The set of upper sets of integers is a filter base on  ZZ, which corresponds to convergence of sequences on  ZZ. (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
zfbas  |-  ran  ZZ>=  e.  ( fBas `  ZZ )

Proof of Theorem zfbas
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzf 11690 . . 3  |-  ZZ>= : ZZ --> ~P ZZ
2 frn 6053 . . 3  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ran  ZZ>=  C_  ~P ZZ )
31, 2ax-mp 5 . 2  |-  ran  ZZ>=  C_  ~P ZZ
4 ffn 6045 . . . . . 6  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
51, 4ax-mp 5 . . . . 5  |-  ZZ>=  Fn  ZZ
6 1z 11407 . . . . 5  |-  1  e.  ZZ
7 fnfvelrn 6356 . . . . 5  |-  ( (
ZZ>=  Fn  ZZ  /\  1  e.  ZZ )  ->  ( ZZ>=
`  1 )  e. 
ran  ZZ>= )
85, 6, 7mp2an 708 . . . 4  |-  ( ZZ>= ` 
1 )  e.  ran  ZZ>=
98ne0ii 3923 . . 3  |-  ran  ZZ>=  =/=  (/)
10 uzid 11702 . . . . . . 7  |-  ( x  e.  ZZ  ->  x  e.  ( ZZ>= `  x )
)
11 n0i 3920 . . . . . . 7  |-  ( x  e.  ( ZZ>= `  x
)  ->  -.  ( ZZ>=
`  x )  =  (/) )
1210, 11syl 17 . . . . . 6  |-  ( x  e.  ZZ  ->  -.  ( ZZ>= `  x )  =  (/) )
1312nrex 3000 . . . . 5  |-  -.  E. x  e.  ZZ  ( ZZ>=
`  x )  =  (/)
14 fvelrnb 6243 . . . . . 6  |-  ( ZZ>=  Fn  ZZ  ->  ( (/)  e.  ran  ZZ>=  <->  E. x  e.  ZZ  ( ZZ>=
`  x )  =  (/) ) )
155, 14ax-mp 5 . . . . 5  |-  ( (/)  e.  ran  ZZ>= 
<->  E. x  e.  ZZ  ( ZZ>= `  x )  =  (/) )
1613, 15mtbir 313 . . . 4  |-  -.  (/)  e.  ran  ZZ>=
1716nelir 2900 . . 3  |-  (/)  e/  ran  ZZ>=
18 uzin2 14084 . . . . 5  |-  ( ( x  e.  ran  ZZ>=  /\  y  e.  ran  ZZ>= )  -> 
( x  i^i  y
)  e.  ran  ZZ>= )
19 vex 3203 . . . . . . 7  |-  x  e. 
_V
2019inex1 4799 . . . . . 6  |-  ( x  i^i  y )  e. 
_V
2120pwid 4174 . . . . 5  |-  ( x  i^i  y )  e. 
~P ( x  i^i  y )
22 inelcm 4032 . . . . 5  |-  ( ( ( x  i^i  y
)  e.  ran  ZZ>=  /\  ( x  i^i  y
)  e.  ~P (
x  i^i  y )
)  ->  ( ran  ZZ>=  i^i  ~P ( x  i^i  y ) )  =/=  (/) )
2318, 21, 22sylancl 694 . . . 4  |-  ( ( x  e.  ran  ZZ>=  /\  y  e.  ran  ZZ>= )  -> 
( ran  ZZ>=  i^i  ~P ( x  i^i  y
) )  =/=  (/) )
2423rgen2a 2977 . . 3  |-  A. x  e.  ran  ZZ>= A. y  e.  ran  ZZ>= ( ran  ZZ>=  i^i  ~P (
x  i^i  y )
)  =/=  (/)
259, 17, 243pm3.2i 1239 . 2  |-  ( ran  ZZ>=  =/=  (/)  /\  (/)  e/  ran  ZZ>=  /\ 
A. x  e.  ran  ZZ>= A. y  e.  ran  ZZ>= ( ran  ZZ>=  i^i  ~P (
x  i^i  y )
)  =/=  (/) )
26 zex 11386 . . 3  |-  ZZ  e.  _V
27 isfbas 21633 . . 3  |-  ( ZZ  e.  _V  ->  ( ran  ZZ>=  e.  ( fBas `  ZZ )  <->  ( ran  ZZ>=  C_ 
~P ZZ  /\  ( ran  ZZ>=  =/=  (/)  /\  (/)  e/  ran  ZZ>=  /\ 
A. x  e.  ran  ZZ>= A. y  e.  ran  ZZ>= ( ran  ZZ>=  i^i  ~P (
x  i^i  y )
)  =/=  (/) ) ) ) )
2826, 27ax-mp 5 . 2  |-  ( ran  ZZ>=  e.  ( fBas `  ZZ ) 
<->  ( ran  ZZ>=  C_  ~P ZZ  /\  ( ran  ZZ>=  =/=  (/)  /\  (/)  e/  ran  ZZ>=  /\  A. x  e.  ran  ZZ>= A. y  e.  ran  ZZ>= ( ran  ZZ>= 
i^i  ~P ( x  i^i  y ) )  =/=  (/) ) ) )
293, 25, 28mpbir2an 955 1  |-  ran  ZZ>=  e.  ( fBas `  ZZ )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    e/ wnel 2897   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   ran crn 5115    Fn wfn 5883   -->wf 5884   ` cfv 5888   1c1 9937   ZZcz 11377   ZZ>=cuz 11687   fBascfbas 19734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-z 11378  df-uz 11688  df-fbas 19743
This theorem is referenced by:  uzfbas  21702
  Copyright terms: Public domain W3C validator