MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wexp Structured version   Visualization version   Unicode version

Theorem wexp 7291
Description: A lexicographical ordering of two well-ordered classes. (Contributed by Scott Fenton, 17-Mar-2011.) (Revised by Mario Carneiro, 7-Mar-2013.)
Hypothesis
Ref Expression
wexp.1  |-  T  =  { <. x ,  y
>.  |  ( (
x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) ) }
Assertion
Ref Expression
wexp  |-  ( ( R  We  A  /\  S  We  B )  ->  T  We  ( A  X.  B ) )
Distinct variable groups:    x, A, y    x, B, y    x, R, y    x, S, y
Allowed substitution hints:    T( x, y)

Proof of Theorem wexp
StepHypRef Expression
1 wefr 5104 . . 3  |-  ( R  We  A  ->  R  Fr  A )
2 wefr 5104 . . 3  |-  ( S  We  B  ->  S  Fr  B )
3 wexp.1 . . . 4  |-  T  =  { <. x ,  y
>.  |  ( (
x  e.  ( A  X.  B )  /\  y  e.  ( A  X.  B ) )  /\  ( ( 1st `  x
) R ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x ) S ( 2nd `  y
) ) ) ) }
43frxp 7287 . . 3  |-  ( ( R  Fr  A  /\  S  Fr  B )  ->  T  Fr  ( A  X.  B ) )
51, 2, 4syl2an 494 . 2  |-  ( ( R  We  A  /\  S  We  B )  ->  T  Fr  ( A  X.  B ) )
6 weso 5105 . . 3  |-  ( R  We  A  ->  R  Or  A )
7 weso 5105 . . 3  |-  ( S  We  B  ->  S  Or  B )
83soxp 7290 . . 3  |-  ( ( R  Or  A  /\  S  Or  B )  ->  T  Or  ( A  X.  B ) )
96, 7, 8syl2an 494 . 2  |-  ( ( R  We  A  /\  S  We  B )  ->  T  Or  ( A  X.  B ) )
10 df-we 5075 . 2  |-  ( T  We  ( A  X.  B )  <->  ( T  Fr  ( A  X.  B
)  /\  T  Or  ( A  X.  B
) ) )
115, 9, 10sylanbrc 698 1  |-  ( ( R  We  A  /\  S  We  B )  ->  T  We  ( A  X.  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653   {copab 4712    Or wor 5034    Fr wfr 5070    We wwe 5072    X. cxp 5112   ` cfv 5888   1stc1st 7166   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by:  fnwelem  7292  leweon  8834
  Copyright terms: Public domain W3C validator