MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leweon Structured version   Visualization version   Unicode version

Theorem leweon 8834
Description: Lexicographical order is a well-ordering of  On  X.  On. Proposition 7.56(1) of [TakeutiZaring] p. 54. Note that unlike r0weon 8835, this order is not set-like, as the preimage of  <. 1o ,  (/) >. is the proper class  ( { (/) }  X.  On ). (Contributed by Mario Carneiro, 9-Mar-2013.)
Hypothesis
Ref Expression
leweon.1  |-  L  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) }
Assertion
Ref Expression
leweon  |-  L  We  ( On  X.  On )
Distinct variable group:    x, y
Allowed substitution hints:    L( x, y)

Proof of Theorem leweon
StepHypRef Expression
1 epweon 6983 . 2  |-  _E  We  On
2 leweon.1 . . . 4  |-  L  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) }
3 fvex 6201 . . . . . . . 8  |-  ( 1st `  y )  e.  _V
43epelc 5031 . . . . . . 7  |-  ( ( 1st `  x )  _E  ( 1st `  y
)  <->  ( 1st `  x
)  e.  ( 1st `  y ) )
5 fvex 6201 . . . . . . . . 9  |-  ( 2nd `  y )  e.  _V
65epelc 5031 . . . . . . . 8  |-  ( ( 2nd `  x )  _E  ( 2nd `  y
)  <->  ( 2nd `  x
)  e.  ( 2nd `  y ) )
76anbi2i 730 . . . . . . 7  |-  ( ( ( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  _E  ( 2nd `  y
) )  <->  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  e.  ( 2nd `  y ) ) )
84, 7orbi12i 543 . . . . . 6  |-  ( ( ( 1st `  x
)  _E  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  _E  ( 2nd `  y
) ) )  <->  ( ( 1st `  x )  e.  ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  e.  ( 2nd `  y ) ) ) )
98anbi2i 730 . . . . 5  |-  ( ( ( x  e.  ( On  X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x )  _E  ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  _E  ( 2nd `  y ) ) ) )  <->  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) )
109opabbii 4717 . . . 4  |-  { <. x ,  y >.  |  ( ( x  e.  ( On  X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x )  _E  ( 1st `  y
)  \/  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  _E  ( 2nd `  y ) ) ) ) }  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  e.  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  e.  ( 2nd `  y
) ) ) ) }
112, 10eqtr4i 2647 . . 3  |-  L  =  { <. x ,  y
>.  |  ( (
x  e.  ( On 
X.  On )  /\  y  e.  ( On  X.  On ) )  /\  ( ( 1st `  x
)  _E  ( 1st `  y )  \/  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  _E  ( 2nd `  y
) ) ) ) }
1211wexp 7291 . 2  |-  ( (  _E  We  On  /\  _E  We  On )  ->  L  We  ( On  X.  On ) )
131, 1, 12mp2an 708 1  |-  L  We  ( On  X.  On )
Colors of variables: wff setvar class
Syntax hints:    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   class class class wbr 4653   {copab 4712    _E cep 5028    We wwe 5072    X. cxp 5112   Oncon0 5723   ` cfv 5888   1stc1st 7166   2ndc2nd 7167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168  df-2nd 7169
This theorem is referenced by:  r0weon  8835
  Copyright terms: Public domain W3C validator