| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sqsscirc1 | Structured version Visualization version Unicode version | ||
| Description: The complex square of
side |
| Ref | Expression |
|---|---|
| sqsscirc1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp-4l 806 |
. . . . . 6
| |
| 2 | 1 | resqcld 13035 |
. . . . 5
|
| 3 | simpllr 799 |
. . . . . . 7
| |
| 4 | 3 | simpld 475 |
. . . . . 6
|
| 5 | 4 | resqcld 13035 |
. . . . 5
|
| 6 | 2, 5 | readdcld 10069 |
. . . 4
|
| 7 | 1 | sqge0d 13036 |
. . . . 5
|
| 8 | 4 | sqge0d 13036 |
. . . . 5
|
| 9 | 2, 5, 7, 8 | addge0d 10603 |
. . . 4
|
| 10 | 6, 9 | resqrtcld 14156 |
. . 3
|
| 11 | simplr 792 |
. . . . . . . 8
| |
| 12 | 11 | rpred 11872 |
. . . . . . 7
|
| 13 | 12 | rehalfcld 11279 |
. . . . . 6
|
| 14 | 13 | resqcld 13035 |
. . . . 5
|
| 15 | 14, 14 | readdcld 10069 |
. . . 4
|
| 16 | 13 | sqge0d 13036 |
. . . . 5
|
| 17 | 14, 14, 16, 16 | addge0d 10603 |
. . . 4
|
| 18 | 15, 17 | resqrtcld 14156 |
. . 3
|
| 19 | simprl 794 |
. . . . . 6
| |
| 20 | simp-4r 807 |
. . . . . . 7
| |
| 21 | 2rp 11837 |
. . . . . . . . 9
| |
| 22 | 21 | a1i 11 |
. . . . . . . 8
|
| 23 | 11 | rpge0d 11876 |
. . . . . . . 8
|
| 24 | 12, 22, 23 | divge0d 11912 |
. . . . . . 7
|
| 25 | 1, 13, 20, 24 | lt2sqd 13043 |
. . . . . 6
|
| 26 | 19, 25 | mpbid 222 |
. . . . 5
|
| 27 | simprr 796 |
. . . . . 6
| |
| 28 | 3 | simprd 479 |
. . . . . . 7
|
| 29 | 4, 13, 28, 24 | lt2sqd 13043 |
. . . . . 6
|
| 30 | 27, 29 | mpbid 222 |
. . . . 5
|
| 31 | 2, 5, 14, 14, 26, 30 | lt2addd 10650 |
. . . 4
|
| 32 | 6, 9, 15, 17 | sqrtltd 14166 |
. . . 4
|
| 33 | 31, 32 | mpbid 222 |
. . 3
|
| 34 | rpre 11839 |
. . . . . . . . . . 11
| |
| 35 | 34 | rehalfcld 11279 |
. . . . . . . . . 10
|
| 36 | 35 | resqcld 13035 |
. . . . . . . . 9
|
| 37 | 36 | recnd 10068 |
. . . . . . . 8
|
| 38 | 37 | 2timesd 11275 |
. . . . . . 7
|
| 39 | 38 | fveq2d 6195 |
. . . . . 6
|
| 40 | 21 | a1i 11 |
. . . . . . . . . 10
|
| 41 | rpge0 11845 |
. . . . . . . . . 10
| |
| 42 | 34, 40, 41 | divge0d 11912 |
. . . . . . . . 9
|
| 43 | 35, 42 | sqrtsqd 14158 |
. . . . . . . 8
|
| 44 | 43 | oveq2d 6666 |
. . . . . . 7
|
| 45 | 2re 11090 |
. . . . . . . . 9
| |
| 46 | 45 | a1i 11 |
. . . . . . . 8
|
| 47 | 0le2 11111 |
. . . . . . . . 9
| |
| 48 | 47 | a1i 11 |
. . . . . . . 8
|
| 49 | 35 | sqge0d 13036 |
. . . . . . . 8
|
| 50 | 46, 48, 36, 49 | sqrtmuld 14163 |
. . . . . . 7
|
| 51 | 2cnd 11093 |
. . . . . . . . 9
| |
| 52 | 51 | sqrtcld 14176 |
. . . . . . . 8
|
| 53 | rpcn 11841 |
. . . . . . . 8
| |
| 54 | 2ne0 11113 |
. . . . . . . . 9
| |
| 55 | 54 | a1i 11 |
. . . . . . . 8
|
| 56 | 52, 51, 53, 55 | div32d 10824 |
. . . . . . 7
|
| 57 | 44, 50, 56 | 3eqtr4d 2666 |
. . . . . 6
|
| 58 | 39, 57 | eqtr3d 2658 |
. . . . 5
|
| 59 | 2lt4 11198 |
. . . . . . . . . 10
| |
| 60 | 4re 11097 |
. . . . . . . . . . 11
| |
| 61 | 0re 10040 |
. . . . . . . . . . . 12
| |
| 62 | 4pos 11116 |
. . . . . . . . . . . 12
| |
| 63 | 61, 60, 62 | ltleii 10160 |
. . . . . . . . . . 11
|
| 64 | sqrtlt 14002 |
. . . . . . . . . . 11
| |
| 65 | 45, 47, 60, 63, 64 | mp4an 709 |
. . . . . . . . . 10
|
| 66 | 59, 65 | mpbi 220 |
. . . . . . . . 9
|
| 67 | 2pos 11112 |
. . . . . . . . . . 11
| |
| 68 | 45, 67 | sqrtpclii 14122 |
. . . . . . . . . 10
|
| 69 | 60, 62 | sqrtpclii 14122 |
. . . . . . . . . 10
|
| 70 | 68, 69, 45, 67 | ltdiv1ii 10953 |
. . . . . . . . 9
|
| 71 | 66, 70 | mpbi 220 |
. . . . . . . 8
|
| 72 | sqrtsq 14010 |
. . . . . . . . . . 11
| |
| 73 | 45, 47, 72 | mp2an 708 |
. . . . . . . . . 10
|
| 74 | 73 | oveq1i 6660 |
. . . . . . . . 9
|
| 75 | sq2 12960 |
. . . . . . . . . . 11
| |
| 76 | 75 | fveq2i 6194 |
. . . . . . . . . 10
|
| 77 | 76 | oveq1i 6660 |
. . . . . . . . 9
|
| 78 | 2div2e1 11150 |
. . . . . . . . 9
| |
| 79 | 74, 77, 78 | 3eqtr3i 2652 |
. . . . . . . 8
|
| 80 | 71, 79 | breqtri 4678 |
. . . . . . 7
|
| 81 | 46, 48 | resqrtcld 14156 |
. . . . . . . . 9
|
| 82 | 81 | rehalfcld 11279 |
. . . . . . . 8
|
| 83 | 1red 10055 |
. . . . . . . 8
| |
| 84 | id 22 |
. . . . . . . 8
| |
| 85 | 82, 83, 84 | ltmul1d 11913 |
. . . . . . 7
|
| 86 | 80, 85 | mpbii 223 |
. . . . . 6
|
| 87 | 53 | mulid2d 10058 |
. . . . . 6
|
| 88 | 86, 87 | breqtrd 4679 |
. . . . 5
|
| 89 | 58, 88 | eqbrtrd 4675 |
. . . 4
|
| 90 | 11, 89 | syl 17 |
. . 3
|
| 91 | 10, 18, 12, 33, 90 | lttrd 10198 |
. 2
|
| 92 | 91 | ex 450 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 |
| This theorem is referenced by: sqsscirc2 29955 |
| Copyright terms: Public domain | W3C validator |