Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnre2csqima Structured version   Visualization version   Unicode version

Theorem cnre2csqima 29957
Description: Image of a centered square by the canonical bijection from  ( RR  X.  RR ) to  CC. (Contributed by Thierry Arnoux, 27-Sep-2017.)
Hypothesis
Ref Expression
cnre2csqima.1  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
Assertion
Ref Expression
cnre2csqima  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  ( Y  e.  ( (
( ( 1st `  X
)  -  D ) (,) ( ( 1st `  X )  +  D
) )  X.  (
( ( 2nd `  X
)  -  D ) (,) ( ( 2nd `  X )  +  D
) ) )  -> 
( ( abs `  (
Re `  ( ( F `  Y )  -  ( F `  X ) ) ) )  <  D  /\  ( abs `  ( Im
`  ( ( F `
 Y )  -  ( F `  X ) ) ) )  < 
D ) ) )
Distinct variable group:    x, y
Allowed substitution hints:    D( x, y)    F( x, y)    X( x, y)    Y( x, y)

Proof of Theorem cnre2csqima
Dummy variables  z  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioossre 12235 . . 3  |-  ( ( ( 1st `  X
)  -  D ) (,) ( ( 1st `  X )  +  D
) )  C_  RR
2 ioossre 12235 . . 3  |-  ( ( ( 2nd `  X
)  -  D ) (,) ( ( 2nd `  X )  +  D
) )  C_  RR
3 xpinpreima2 29953 . . . 4  |-  ( ( ( ( ( 1st `  X )  -  D
) (,) ( ( 1st `  X )  +  D ) ) 
C_  RR  /\  (
( ( 2nd `  X
)  -  D ) (,) ( ( 2nd `  X )  +  D
) )  C_  RR )  ->  ( ( ( ( 1st `  X
)  -  D ) (,) ( ( 1st `  X )  +  D
) )  X.  (
( ( 2nd `  X
)  -  D ) (,) ( ( 2nd `  X )  +  D
) ) )  =  ( ( `' ( 1st  |`  ( RR  X.  RR ) ) "
( ( ( 1st `  X )  -  D
) (,) ( ( 1st `  X )  +  D ) ) )  i^i  ( `' ( 2nd  |`  ( RR  X.  RR ) )
" ( ( ( 2nd `  X )  -  D ) (,) ( ( 2nd `  X
)  +  D ) ) ) ) )
43eleq2d 2687 . . 3  |-  ( ( ( ( ( 1st `  X )  -  D
) (,) ( ( 1st `  X )  +  D ) ) 
C_  RR  /\  (
( ( 2nd `  X
)  -  D ) (,) ( ( 2nd `  X )  +  D
) )  C_  RR )  ->  ( Y  e.  ( ( ( ( 1st `  X )  -  D ) (,) ( ( 1st `  X
)  +  D ) )  X.  ( ( ( 2nd `  X
)  -  D ) (,) ( ( 2nd `  X )  +  D
) ) )  <->  Y  e.  ( ( `' ( 1st  |`  ( RR  X.  RR ) ) "
( ( ( 1st `  X )  -  D
) (,) ( ( 1st `  X )  +  D ) ) )  i^i  ( `' ( 2nd  |`  ( RR  X.  RR ) )
" ( ( ( 2nd `  X )  -  D ) (,) ( ( 2nd `  X
)  +  D ) ) ) ) ) )
51, 2, 4mp2an 708 . 2  |-  ( Y  e.  ( ( ( ( 1st `  X
)  -  D ) (,) ( ( 1st `  X )  +  D
) )  X.  (
( ( 2nd `  X
)  -  D ) (,) ( ( 2nd `  X )  +  D
) ) )  <->  Y  e.  ( ( `' ( 1st  |`  ( RR  X.  RR ) ) "
( ( ( 1st `  X )  -  D
) (,) ( ( 1st `  X )  +  D ) ) )  i^i  ( `' ( 2nd  |`  ( RR  X.  RR ) )
" ( ( ( 2nd `  X )  -  D ) (,) ( ( 2nd `  X
)  +  D ) ) ) ) )
6 elin 3796 . . 3  |-  ( Y  e.  ( ( `' ( 1st  |`  ( RR  X.  RR ) )
" ( ( ( 1st `  X )  -  D ) (,) ( ( 1st `  X
)  +  D ) ) )  i^i  ( `' ( 2nd  |`  ( RR  X.  RR ) )
" ( ( ( 2nd `  X )  -  D ) (,) ( ( 2nd `  X
)  +  D ) ) ) )  <->  ( Y  e.  ( `' ( 1st  |`  ( RR  X.  RR ) ) " (
( ( 1st `  X
)  -  D ) (,) ( ( 1st `  X )  +  D
) ) )  /\  Y  e.  ( `' ( 2nd  |`  ( RR  X.  RR ) ) "
( ( ( 2nd `  X )  -  D
) (,) ( ( 2nd `  X )  +  D ) ) ) ) )
7 simpl 473 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  x  e.  RR )
87recnd 10068 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  x  e.  CC )
9 ax-icn 9995 . . . . . . . . . . . 12  |-  _i  e.  CC
109a1i 11 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  _i  e.  CC )
11 simpr 477 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  y  e.  RR )
1211recnd 10068 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  y  e.  CC )
1310, 12mulcld 10060 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( _i  x.  y
)  e.  CC )
148, 13addcld 10059 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  +  ( _i  x.  y ) )  e.  CC )
15 reval 13846 . . . . . . . . 9  |-  ( ( x  +  ( _i  x.  y ) )  e.  CC  ->  (
Re `  ( x  +  ( _i  x.  y ) ) )  =  ( ( ( x  +  ( _i  x.  y ) )  +  ( * `  ( x  +  (
_i  x.  y )
) ) )  / 
2 ) )
1614, 15syl 17 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( Re `  (
x  +  ( _i  x.  y ) ) )  =  ( ( ( x  +  ( _i  x.  y ) )  +  ( * `
 ( x  +  ( _i  x.  y
) ) ) )  /  2 ) )
17 crre 13854 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( Re `  (
x  +  ( _i  x.  y ) ) )  =  x )
1816, 17eqtr3d 2658 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( ( x  +  ( _i  x.  y ) )  +  ( * `  (
x  +  ( _i  x.  y ) ) ) )  /  2
)  =  x )
1918mpt2eq3ia 6720 . . . . . 6  |-  ( x  e.  RR ,  y  e.  RR  |->  ( ( ( x  +  ( _i  x.  y ) )  +  ( * `
 ( x  +  ( _i  x.  y
) ) ) )  /  2 ) )  =  ( x  e.  RR ,  y  e.  RR  |->  x )
2014adantl 482 . . . . . . . 8  |-  ( ( T.  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( x  +  ( _i  x.  y ) )  e.  CC )
21 cnre2csqima.1 . . . . . . . . 9  |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
2221a1i 11 . . . . . . . 8  |-  ( T. 
->  F  =  (
x  e.  RR , 
y  e.  RR  |->  ( x  +  ( _i  x.  y ) ) ) )
23 df-re 13840 . . . . . . . . 9  |-  Re  =  ( z  e.  CC  |->  ( ( z  +  ( * `  z
) )  /  2
) )
2423a1i 11 . . . . . . . 8  |-  ( T. 
->  Re  =  ( z  e.  CC  |->  ( ( z  +  ( * `
 z ) )  /  2 ) ) )
25 id 22 . . . . . . . . . 10  |-  ( z  =  ( x  +  ( _i  x.  y
) )  ->  z  =  ( x  +  ( _i  x.  y
) ) )
26 fveq2 6191 . . . . . . . . . 10  |-  ( z  =  ( x  +  ( _i  x.  y
) )  ->  (
* `  z )  =  ( * `  ( x  +  (
_i  x.  y )
) ) )
2725, 26oveq12d 6668 . . . . . . . . 9  |-  ( z  =  ( x  +  ( _i  x.  y
) )  ->  (
z  +  ( * `
 z ) )  =  ( ( x  +  ( _i  x.  y ) )  +  ( * `  (
x  +  ( _i  x.  y ) ) ) ) )
2827oveq1d 6665 . . . . . . . 8  |-  ( z  =  ( x  +  ( _i  x.  y
) )  ->  (
( z  +  ( * `  z ) )  /  2 )  =  ( ( ( x  +  ( _i  x.  y ) )  +  ( * `  ( x  +  (
_i  x.  y )
) ) )  / 
2 ) )
2920, 22, 24, 28fmpt2co 7260 . . . . . . 7  |-  ( T. 
->  ( Re  o.  F
)  =  ( x  e.  RR ,  y  e.  RR  |->  ( ( ( x  +  ( _i  x.  y ) )  +  ( * `
 ( x  +  ( _i  x.  y
) ) ) )  /  2 ) ) )
3029trud 1493 . . . . . 6  |-  ( Re  o.  F )  =  ( x  e.  RR ,  y  e.  RR  |->  ( ( ( x  +  ( _i  x.  y ) )  +  ( * `  (
x  +  ( _i  x.  y ) ) ) )  /  2
) )
31 df1stres 29481 . . . . . 6  |-  ( 1st  |`  ( RR  X.  RR ) )  =  ( x  e.  RR , 
y  e.  RR  |->  x )
3219, 30, 313eqtr4ri 2655 . . . . 5  |-  ( 1st  |`  ( RR  X.  RR ) )  =  ( Re  o.  F )
3314rgen2a 2977 . . . . . 6  |-  A. x  e.  RR  A. y  e.  RR  ( x  +  ( _i  x.  y
) )  e.  CC
3421fnmpt2 7238 . . . . . 6  |-  ( A. x  e.  RR  A. y  e.  RR  ( x  +  ( _i  x.  y
) )  e.  CC  ->  F  Fn  ( RR 
X.  RR ) )
3533, 34ax-mp 5 . . . . 5  |-  F  Fn  ( RR  X.  RR )
36 fo1st 7188 . . . . . 6  |-  1st : _V -onto-> _V
37 fofn 6117 . . . . . 6  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
3836, 37ax-mp 5 . . . . 5  |-  1st  Fn  _V
39 xp1st 7198 . . . . 5  |-  ( z  e.  ( RR  X.  RR )  ->  ( 1st `  z )  e.  RR )
4021rnmpt2 6770 . . . . . . . 8  |-  ran  F  =  { z  |  E. x  e.  RR  E. y  e.  RR  z  =  ( x  +  ( _i  x.  y ) ) }
41 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  z  =  ( x  +  ( _i  x.  y ) ) )  ->  z  =  ( x  +  (
_i  x.  y )
) )
4214adantr 481 . . . . . . . . . . . 12  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  z  =  ( x  +  ( _i  x.  y ) ) )  ->  ( x  +  ( _i  x.  y ) )  e.  CC )
4341, 42eqeltrd 2701 . . . . . . . . . . 11  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  z  =  ( x  +  ( _i  x.  y ) ) )  ->  z  e.  CC )
4443ex 450 . . . . . . . . . 10  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( z  =  ( x  +  ( _i  x.  y ) )  ->  z  e.  CC ) )
4544rexlimivv 3036 . . . . . . . . 9  |-  ( E. x  e.  RR  E. y  e.  RR  z  =  ( x  +  ( _i  x.  y
) )  ->  z  e.  CC )
4645abssi 3677 . . . . . . . 8  |-  { z  |  E. x  e.  RR  E. y  e.  RR  z  =  ( x  +  ( _i  x.  y ) ) }  C_  CC
4740, 46eqsstri 3635 . . . . . . 7  |-  ran  F  C_  CC
48 simpl 473 . . . . . . 7  |-  ( ( z  e.  ran  F  /\  u  e.  ran  F )  ->  z  e.  ran  F )
4947, 48sseldi 3601 . . . . . 6  |-  ( ( z  e.  ran  F  /\  u  e.  ran  F )  ->  z  e.  CC )
50 simpr 477 . . . . . . 7  |-  ( ( z  e.  ran  F  /\  u  e.  ran  F )  ->  u  e.  ran  F )
5147, 50sseldi 3601 . . . . . 6  |-  ( ( z  e.  ran  F  /\  u  e.  ran  F )  ->  u  e.  CC )
5249, 51resubd 13956 . . . . 5  |-  ( ( z  e.  ran  F  /\  u  e.  ran  F )  ->  ( Re `  ( z  -  u
) )  =  ( ( Re `  z
)  -  ( Re
`  u ) ) )
5332, 35, 38, 39, 52cnre2csqlem 29956 . . . 4  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  ( Y  e.  ( `' ( 1st  |`  ( RR  X.  RR ) ) "
( ( ( 1st `  X )  -  D
) (,) ( ( 1st `  X )  +  D ) ) )  ->  ( abs `  ( Re `  (
( F `  Y
)  -  ( F `
 X ) ) ) )  <  D
) )
54 imval 13847 . . . . . . . . 9  |-  ( ( x  +  ( _i  x.  y ) )  e.  CC  ->  (
Im `  ( x  +  ( _i  x.  y ) ) )  =  ( Re `  ( ( x  +  ( _i  x.  y
) )  /  _i ) ) )
5514, 54syl 17 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( Im `  (
x  +  ( _i  x.  y ) ) )  =  ( Re
`  ( ( x  +  ( _i  x.  y ) )  /  _i ) ) )
56 crim 13855 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( Im `  (
x  +  ( _i  x.  y ) ) )  =  y )
5755, 56eqtr3d 2658 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( Re `  (
( x  +  ( _i  x.  y ) )  /  _i ) )  =  y )
5857mpt2eq3ia 6720 . . . . . 6  |-  ( x  e.  RR ,  y  e.  RR  |->  ( Re
`  ( ( x  +  ( _i  x.  y ) )  /  _i ) ) )  =  ( x  e.  RR ,  y  e.  RR  |->  y )
59 df-im 13841 . . . . . . . . 9  |-  Im  =  ( z  e.  CC  |->  ( Re `  ( z  /  _i ) ) )
6059a1i 11 . . . . . . . 8  |-  ( T. 
->  Im  =  ( z  e.  CC  |->  ( Re
`  ( z  /  _i ) ) ) )
61 oveq1 6657 . . . . . . . . 9  |-  ( z  =  ( x  +  ( _i  x.  y
) )  ->  (
z  /  _i )  =  ( ( x  +  ( _i  x.  y ) )  /  _i ) )
6261fveq2d 6195 . . . . . . . 8  |-  ( z  =  ( x  +  ( _i  x.  y
) )  ->  (
Re `  ( z  /  _i ) )  =  ( Re `  (
( x  +  ( _i  x.  y ) )  /  _i ) ) )
6320, 22, 60, 62fmpt2co 7260 . . . . . . 7  |-  ( T. 
->  ( Im  o.  F
)  =  ( x  e.  RR ,  y  e.  RR  |->  ( Re
`  ( ( x  +  ( _i  x.  y ) )  /  _i ) ) ) )
6463trud 1493 . . . . . 6  |-  ( Im  o.  F )  =  ( x  e.  RR ,  y  e.  RR  |->  ( Re `  ( ( x  +  ( _i  x.  y ) )  /  _i ) ) )
65 df2ndres 29482 . . . . . 6  |-  ( 2nd  |`  ( RR  X.  RR ) )  =  ( x  e.  RR , 
y  e.  RR  |->  y )
6658, 64, 653eqtr4ri 2655 . . . . 5  |-  ( 2nd  |`  ( RR  X.  RR ) )  =  ( Im  o.  F )
67 fo2nd 7189 . . . . . 6  |-  2nd : _V -onto-> _V
68 fofn 6117 . . . . . 6  |-  ( 2nd
: _V -onto-> _V  ->  2nd 
Fn  _V )
6967, 68ax-mp 5 . . . . 5  |-  2nd  Fn  _V
70 xp2nd 7199 . . . . 5  |-  ( z  e.  ( RR  X.  RR )  ->  ( 2nd `  z )  e.  RR )
7149, 51imsubd 13957 . . . . 5  |-  ( ( z  e.  ran  F  /\  u  e.  ran  F )  ->  ( Im `  ( z  -  u
) )  =  ( ( Im `  z
)  -  ( Im
`  u ) ) )
7266, 35, 69, 70, 71cnre2csqlem 29956 . . . 4  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  ( Y  e.  ( `' ( 2nd  |`  ( RR  X.  RR ) ) "
( ( ( 2nd `  X )  -  D
) (,) ( ( 2nd `  X )  +  D ) ) )  ->  ( abs `  ( Im `  (
( F `  Y
)  -  ( F `
 X ) ) ) )  <  D
) )
7353, 72anim12d 586 . . 3  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  (
( Y  e.  ( `' ( 1st  |`  ( RR  X.  RR ) )
" ( ( ( 1st `  X )  -  D ) (,) ( ( 1st `  X
)  +  D ) ) )  /\  Y  e.  ( `' ( 2nd  |`  ( RR  X.  RR ) ) " (
( ( 2nd `  X
)  -  D ) (,) ( ( 2nd `  X )  +  D
) ) ) )  ->  ( ( abs `  ( Re `  (
( F `  Y
)  -  ( F `
 X ) ) ) )  <  D  /\  ( abs `  (
Im `  ( ( F `  Y )  -  ( F `  X ) ) ) )  <  D ) ) )
746, 73syl5bi 232 . 2  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  ( Y  e.  ( ( `' ( 1st  |`  ( RR  X.  RR ) )
" ( ( ( 1st `  X )  -  D ) (,) ( ( 1st `  X
)  +  D ) ) )  i^i  ( `' ( 2nd  |`  ( RR  X.  RR ) )
" ( ( ( 2nd `  X )  -  D ) (,) ( ( 2nd `  X
)  +  D ) ) ) )  -> 
( ( abs `  (
Re `  ( ( F `  Y )  -  ( F `  X ) ) ) )  <  D  /\  ( abs `  ( Im
`  ( ( F `
 Y )  -  ( F `  X ) ) ) )  < 
D ) ) )
755, 74syl5bi 232 1  |-  ( ( X  e.  ( RR 
X.  RR )  /\  Y  e.  ( RR  X.  RR )  /\  D  e.  RR+ )  ->  ( Y  e.  ( (
( ( 1st `  X
)  -  D ) (,) ( ( 1st `  X )  +  D
) )  X.  (
( ( 2nd `  X
)  -  D ) (,) ( ( 2nd `  X )  +  D
) ) )  -> 
( ( abs `  (
Re `  ( ( F `  Y )  -  ( F `  X ) ) ) )  <  D  /\  ( abs `  ( Im
`  ( ( F `
 Y )  -  ( F `  X ) ) ) )  < 
D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   T. wtru 1484    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729    X. cxp 5112   `'ccnv 5113   ran crn 5115    |` cres 5116   "cima 5117    o. ccom 5118    Fn wfn 5883   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   1stc1st 7166   2ndc2nd 7167   CCcc 9934   RRcr 9935   _ici 9938    + caddc 9939    x. cmul 9941    < clt 10074    - cmin 10266    / cdiv 10684   2c2 11070   RR+crp 11832   (,)cioo 12175   *ccj 13836   Recre 13837   Imcim 13838   abscabs 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ioo 12179  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976
This theorem is referenced by:  tpr2rico  29958
  Copyright terms: Public domain W3C validator