MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnconst2 Structured version   Visualization version   Unicode version

Theorem cnconst2 21087
Description: A constant function is continuous. (Contributed by Mario Carneiro, 19-Mar-2015.)
Assertion
Ref Expression
cnconst2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  ->  ( X  X.  { B } )  e.  ( J  Cn  K ) )

Proof of Theorem cnconst2
Dummy variables  x  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconst6g 6094 . . 3  |-  ( B  e.  Y  ->  ( X  X.  { B }
) : X --> Y )
213ad2ant3 1084 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  ->  ( X  X.  { B } ) : X --> Y )
32adantr 481 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  ( X  X.  { B }
) : X --> Y )
4 simpll3 1102 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  B  e.  Y )
5 simplr 792 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  x  e.  X )
6 fvconst2g 6467 . . . . . . . 8  |-  ( ( B  e.  Y  /\  x  e.  X )  ->  ( ( X  X.  { B } ) `  x )  =  B )
74, 5, 6syl2anc 693 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  (
( X  X.  { B } ) `  x
)  =  B )
87eleq1d 2686 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  (
( ( X  X.  { B } ) `  x )  e.  y  <-> 
B  e.  y ) )
9 simpll1 1100 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  J  e.  (TopOn `  X ) )
10 toponmax 20730 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
119, 10syl 17 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  X  e.  J )
12 simplr 792 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  x  e.  X )
13 df-ima 5127 . . . . . . . . 9  |-  ( ( X  X.  { B } ) " X
)  =  ran  (
( X  X.  { B } )  |`  X )
14 ssid 3624 . . . . . . . . . . . . 13  |-  X  C_  X
15 xpssres 5434 . . . . . . . . . . . . 13  |-  ( X 
C_  X  ->  (
( X  X.  { B } )  |`  X )  =  ( X  X.  { B } ) )
1614, 15ax-mp 5 . . . . . . . . . . . 12  |-  ( ( X  X.  { B } )  |`  X )  =  ( X  X.  { B } )
1716rneqi 5352 . . . . . . . . . . 11  |-  ran  (
( X  X.  { B } )  |`  X )  =  ran  ( X  X.  { B }
)
18 rnxpss 5566 . . . . . . . . . . 11  |-  ran  ( X  X.  { B }
)  C_  { B }
1917, 18eqsstri 3635 . . . . . . . . . 10  |-  ran  (
( X  X.  { B } )  |`  X ) 
C_  { B }
20 simprr 796 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  B  e.  y )
2120snssd 4340 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  { B }  C_  y )
2219, 21syl5ss 3614 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  ran  ( ( X  X.  { B } )  |`  X ) 
C_  y )
2313, 22syl5eqss 3649 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  ( ( X  X.  { B }
) " X ) 
C_  y )
24 eleq2 2690 . . . . . . . . . 10  |-  ( u  =  X  ->  (
x  e.  u  <->  x  e.  X ) )
25 imaeq2 5462 . . . . . . . . . . 11  |-  ( u  =  X  ->  (
( X  X.  { B } ) " u
)  =  ( ( X  X.  { B } ) " X
) )
2625sseq1d 3632 . . . . . . . . . 10  |-  ( u  =  X  ->  (
( ( X  X.  { B } ) "
u )  C_  y  <->  ( ( X  X.  { B } ) " X
)  C_  y )
)
2724, 26anbi12d 747 . . . . . . . . 9  |-  ( u  =  X  ->  (
( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
)  <->  ( x  e.  X  /\  ( ( X  X.  { B } ) " X
)  C_  y )
) )
2827rspcev 3309 . . . . . . . 8  |-  ( ( X  e.  J  /\  ( x  e.  X  /\  ( ( X  X.  { B } ) " X )  C_  y
) )  ->  E. u  e.  J  ( x  e.  u  /\  (
( X  X.  { B } ) " u
)  C_  y )
)
2911, 12, 23, 28syl12anc 1324 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  (
y  e.  K  /\  B  e.  y )
)  ->  E. u  e.  J  ( x  e.  u  /\  (
( X  X.  { B } ) " u
)  C_  y )
)
3029expr 643 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  ( B  e.  y  ->  E. u  e.  J  ( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
) ) )
318, 30sylbid 230 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y )  /\  x  e.  X )  /\  y  e.  K )  ->  (
( ( X  X.  { B } ) `  x )  e.  y  ->  E. u  e.  J  ( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
) ) )
3231ralrimiva 2966 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  A. y  e.  K  ( (
( X  X.  { B } ) `  x
)  e.  y  ->  E. u  e.  J  ( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
) ) )
33 simpl1 1064 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  J  e.  (TopOn `  X )
)
34 simpl2 1065 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  K  e.  (TopOn `  Y )
)
35 simpr 477 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  x  e.  X )
36 iscnp 21041 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  x  e.  X
)  ->  ( ( X  X.  { B }
)  e.  ( ( J  CnP  K ) `
 x )  <->  ( ( X  X.  { B }
) : X --> Y  /\  A. y  e.  K  ( ( ( X  X.  { B } ) `  x )  e.  y  ->  E. u  e.  J  ( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
) ) ) ) )
3733, 34, 35, 36syl3anc 1326 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  (
( X  X.  { B } )  e.  ( ( J  CnP  K
) `  x )  <->  ( ( X  X.  { B } ) : X --> Y  /\  A. y  e.  K  ( ( ( X  X.  { B } ) `  x
)  e.  y  ->  E. u  e.  J  ( x  e.  u  /\  ( ( X  X.  { B } ) "
u )  C_  y
) ) ) ) )
383, 32, 37mpbir2and 957 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  /\  x  e.  X )  ->  ( X  X.  { B }
)  e.  ( ( J  CnP  K ) `
 x ) )
3938ralrimiva 2966 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  ->  A. x  e.  X  ( X  X.  { B } )  e.  ( ( J  CnP  K ) `  x ) )
40 cncnp 21084 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( ( X  X.  { B }
)  e.  ( J  Cn  K )  <->  ( ( X  X.  { B }
) : X --> Y  /\  A. x  e.  X  ( X  X.  { B } )  e.  ( ( J  CnP  K
) `  x )
) ) )
41403adant3 1081 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  ->  ( ( X  X.  { B }
)  e.  ( J  Cn  K )  <->  ( ( X  X.  { B }
) : X --> Y  /\  A. x  e.  X  ( X  X.  { B } )  e.  ( ( J  CnP  K
) `  x )
) ) )
422, 39, 41mpbir2and 957 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )  /\  B  e.  Y
)  ->  ( X  X.  { B } )  e.  ( J  Cn  K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   {csn 4177    X. cxp 5112   ran crn 5115    |` cres 5116   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650  TopOnctopon 20715    Cn ccn 21028    CnP ccnp 21029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-topgen 16104  df-top 20699  df-topon 20716  df-cn 21031  df-cnp 21032
This theorem is referenced by:  cnconst  21088  xkoccn  21422  txkgen  21455  cnmptc  21465  pcoptcl  22821  blocni  27660  pl1cn  30001  connpconn  31217  cvmliftphtlem  31299  cvmlift3lem9  31309  cnfdmsn  40095  stoweidlem47  40264
  Copyright terms: Public domain W3C validator