MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcmulf Structured version   Visualization version   Unicode version

Theorem dvcmulf 23708
Description: The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Hypotheses
Ref Expression
dvcmul.s  |-  ( ph  ->  S  e.  { RR ,  CC } )
dvcmul.f  |-  ( ph  ->  F : X --> CC )
dvcmul.a  |-  ( ph  ->  A  e.  CC )
dvcmulf.df  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
Assertion
Ref Expression
dvcmulf  |-  ( ph  ->  ( S  _D  (
( S  X.  { A } )  oF  x.  F ) )  =  ( ( S  X.  { A }
)  oF  x.  ( S  _D  F
) ) )

Proof of Theorem dvcmulf
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 dvcmul.s . . 3  |-  ( ph  ->  S  e.  { RR ,  CC } )
2 dvcmul.a . . . . 5  |-  ( ph  ->  A  e.  CC )
3 fconstg 6092 . . . . 5  |-  ( A  e.  CC  ->  ( X  X.  { A }
) : X --> { A } )
42, 3syl 17 . . . 4  |-  ( ph  ->  ( X  X.  { A } ) : X --> { A } )
52snssd 4340 . . . 4  |-  ( ph  ->  { A }  C_  CC )
64, 5fssd 6057 . . 3  |-  ( ph  ->  ( X  X.  { A } ) : X --> CC )
7 dvcmul.f . . 3  |-  ( ph  ->  F : X --> CC )
8 c0ex 10034 . . . . . 6  |-  0  e.  _V
98fconst 6091 . . . . 5  |-  ( X  X.  { 0 } ) : X --> { 0 }
10 recnprss 23668 . . . . . . . . 9  |-  ( S  e.  { RR ,  CC }  ->  S  C_  CC )
111, 10syl 17 . . . . . . . 8  |-  ( ph  ->  S  C_  CC )
12 fconstg 6092 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( S  X.  { A }
) : S --> { A } )
132, 12syl 17 . . . . . . . . 9  |-  ( ph  ->  ( S  X.  { A } ) : S --> { A } )
1413, 5fssd 6057 . . . . . . . 8  |-  ( ph  ->  ( S  X.  { A } ) : S --> CC )
15 ssid 3624 . . . . . . . . 9  |-  S  C_  S
1615a1i 11 . . . . . . . 8  |-  ( ph  ->  S  C_  S )
17 dvcmulf.df . . . . . . . . 9  |-  ( ph  ->  dom  ( S  _D  F )  =  X )
18 dvbsss 23666 . . . . . . . . . 10  |-  dom  ( S  _D  F )  C_  S
1918a1i 11 . . . . . . . . 9  |-  ( ph  ->  dom  ( S  _D  F )  C_  S
)
2017, 19eqsstr3d 3640 . . . . . . . 8  |-  ( ph  ->  X  C_  S )
21 eqid 2622 . . . . . . . . 9  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
22 eqid 2622 . . . . . . . . 9  |-  ( (
TopOpen ` fld )t  S )  =  ( ( TopOpen ` fld )t  S )
2321, 22dvres 23675 . . . . . . . 8  |-  ( ( ( S  C_  CC  /\  ( S  X.  { A } ) : S --> CC )  /\  ( S  C_  S  /\  X  C_  S ) )  -> 
( S  _D  (
( S  X.  { A } )  |`  X ) )  =  ( ( S  _D  ( S  X.  { A }
) )  |`  (
( int `  (
( TopOpen ` fld )t  S ) ) `  X ) ) )
2411, 14, 16, 20, 23syl22anc 1327 . . . . . . 7  |-  ( ph  ->  ( S  _D  (
( S  X.  { A } )  |`  X ) )  =  ( ( S  _D  ( S  X.  { A }
) )  |`  (
( int `  (
( TopOpen ` fld )t  S ) ) `  X ) ) )
2520resmptd 5452 . . . . . . . . 9  |-  ( ph  ->  ( ( x  e.  S  |->  A )  |`  X )  =  ( x  e.  X  |->  A ) )
26 fconstmpt 5163 . . . . . . . . . 10  |-  ( S  X.  { A }
)  =  ( x  e.  S  |->  A )
2726reseq1i 5392 . . . . . . . . 9  |-  ( ( S  X.  { A } )  |`  X )  =  ( ( x  e.  S  |->  A )  |`  X )
28 fconstmpt 5163 . . . . . . . . 9  |-  ( X  X.  { A }
)  =  ( x  e.  X  |->  A )
2925, 27, 283eqtr4g 2681 . . . . . . . 8  |-  ( ph  ->  ( ( S  X.  { A } )  |`  X )  =  ( X  X.  { A } ) )
3029oveq2d 6666 . . . . . . 7  |-  ( ph  ->  ( S  _D  (
( S  X.  { A } )  |`  X ) )  =  ( S  _D  ( X  X.  { A } ) ) )
3120resmptd 5452 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  S  |->  0 )  |`  X )  =  ( x  e.  X  |->  0 ) )
32 fconstg 6092 . . . . . . . . . . . . . 14  |-  ( A  e.  CC  ->  ( CC  X.  { A }
) : CC --> { A } )
332, 32syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  ( CC  X.  { A } ) : CC --> { A } )
3433, 5fssd 6057 . . . . . . . . . . . 12  |-  ( ph  ->  ( CC  X.  { A } ) : CC --> CC )
35 ssid 3624 . . . . . . . . . . . . 13  |-  CC  C_  CC
3635a1i 11 . . . . . . . . . . . 12  |-  ( ph  ->  CC  C_  CC )
37 dvconst 23680 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  ( CC  _D  ( CC  X.  { A } ) )  =  ( CC  X.  { 0 } ) )
382, 37syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( CC  _D  ( CC  X.  { A }
) )  =  ( CC  X.  { 0 } ) )
3938dmeqd 5326 . . . . . . . . . . . . . 14  |-  ( ph  ->  dom  ( CC  _D  ( CC  X.  { A } ) )  =  dom  ( CC  X.  { 0 } ) )
408fconst 6091 . . . . . . . . . . . . . . 15  |-  ( CC 
X.  { 0 } ) : CC --> { 0 }
4140fdmi 6052 . . . . . . . . . . . . . 14  |-  dom  ( CC  X.  { 0 } )  =  CC
4239, 41syl6eq 2672 . . . . . . . . . . . . 13  |-  ( ph  ->  dom  ( CC  _D  ( CC  X.  { A } ) )  =  CC )
4311, 42sseqtr4d 3642 . . . . . . . . . . . 12  |-  ( ph  ->  S  C_  dom  ( CC 
_D  ( CC  X.  { A } ) ) )
44 dvres3 23677 . . . . . . . . . . . 12  |-  ( ( ( S  e.  { RR ,  CC }  /\  ( CC  X.  { A } ) : CC --> CC )  /\  ( CC  C_  CC  /\  S  C_ 
dom  ( CC  _D  ( CC  X.  { A } ) ) ) )  ->  ( S  _D  ( ( CC  X.  { A } )  |`  S ) )  =  ( ( CC  _D  ( CC  X.  { A } ) )  |`  S ) )
451, 34, 36, 43, 44syl22anc 1327 . . . . . . . . . . 11  |-  ( ph  ->  ( S  _D  (
( CC  X.  { A } )  |`  S ) )  =  ( ( CC  _D  ( CC 
X.  { A }
) )  |`  S ) )
46 xpssres 5434 . . . . . . . . . . . . 13  |-  ( S 
C_  CC  ->  ( ( CC  X.  { A } )  |`  S )  =  ( S  X.  { A } ) )
4711, 46syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( CC  X.  { A } )  |`  S )  =  ( S  X.  { A } ) )
4847oveq2d 6666 . . . . . . . . . . 11  |-  ( ph  ->  ( S  _D  (
( CC  X.  { A } )  |`  S ) )  =  ( S  _D  ( S  X.  { A } ) ) )
4938reseq1d 5395 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( CC  _D  ( CC  X.  { A } ) )  |`  S )  =  ( ( CC  X.  {
0 } )  |`  S ) )
50 xpssres 5434 . . . . . . . . . . . . 13  |-  ( S 
C_  CC  ->  ( ( CC  X.  { 0 } )  |`  S )  =  ( S  X.  { 0 } ) )
5111, 50syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( CC  X.  { 0 } )  |`  S )  =  ( S  X.  { 0 } ) )
5249, 51eqtrd 2656 . . . . . . . . . . 11  |-  ( ph  ->  ( ( CC  _D  ( CC  X.  { A } ) )  |`  S )  =  ( S  X.  { 0 } ) )
5345, 48, 523eqtr3d 2664 . . . . . . . . . 10  |-  ( ph  ->  ( S  _D  ( S  X.  { A }
) )  =  ( S  X.  { 0 } ) )
54 fconstmpt 5163 . . . . . . . . . 10  |-  ( S  X.  { 0 } )  =  ( x  e.  S  |->  0 )
5553, 54syl6eq 2672 . . . . . . . . 9  |-  ( ph  ->  ( S  _D  ( S  X.  { A }
) )  =  ( x  e.  S  |->  0 ) )
5621cnfldtopon 22586 . . . . . . . . . . . . 13  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
57 resttopon 20965 . . . . . . . . . . . . 13  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  S  C_  CC )  ->  (
( TopOpen ` fld )t  S )  e.  (TopOn `  S ) )
5856, 11, 57sylancr 695 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( TopOpen ` fld )t  S )  e.  (TopOn `  S ) )
59 topontop 20718 . . . . . . . . . . . 12  |-  ( ( ( TopOpen ` fld )t  S )  e.  (TopOn `  S )  ->  (
( TopOpen ` fld )t  S )  e.  Top )
6058, 59syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( ( TopOpen ` fld )t  S )  e.  Top )
61 toponuni 20719 . . . . . . . . . . . . 13  |-  ( ( ( TopOpen ` fld )t  S )  e.  (TopOn `  S )  ->  S  =  U. ( ( TopOpen ` fld )t  S
) )
6258, 61syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  S  =  U. (
( TopOpen ` fld )t  S ) )
6320, 62sseqtrd 3641 . . . . . . . . . . 11  |-  ( ph  ->  X  C_  U. (
( TopOpen ` fld )t  S ) )
64 eqid 2622 . . . . . . . . . . . 12  |-  U. (
( TopOpen ` fld )t  S )  =  U. ( ( TopOpen ` fld )t  S )
6564ntrss2 20861 . . . . . . . . . . 11  |-  ( ( ( ( TopOpen ` fld )t  S )  e.  Top  /\  X  C_  U. (
( TopOpen ` fld )t  S ) )  -> 
( ( int `  (
( TopOpen ` fld )t  S ) ) `  X )  C_  X
)
6660, 63, 65syl2anc 693 . . . . . . . . . 10  |-  ( ph  ->  ( ( int `  (
( TopOpen ` fld )t  S ) ) `  X )  C_  X
)
6711, 7, 20, 22, 21dvbssntr 23664 . . . . . . . . . . 11  |-  ( ph  ->  dom  ( S  _D  F )  C_  (
( int `  (
( TopOpen ` fld )t  S ) ) `  X ) )
6817, 67eqsstr3d 3640 . . . . . . . . . 10  |-  ( ph  ->  X  C_  ( ( int `  ( ( TopOpen ` fld )t  S
) ) `  X
) )
6966, 68eqssd 3620 . . . . . . . . 9  |-  ( ph  ->  ( ( int `  (
( TopOpen ` fld )t  S ) ) `  X )  =  X )
7055, 69reseq12d 5397 . . . . . . . 8  |-  ( ph  ->  ( ( S  _D  ( S  X.  { A } ) )  |`  ( ( int `  (
( TopOpen ` fld )t  S ) ) `  X ) )  =  ( ( x  e.  S  |->  0 )  |`  X ) )
71 fconstmpt 5163 . . . . . . . . 9  |-  ( X  X.  { 0 } )  =  ( x  e.  X  |->  0 )
7271a1i 11 . . . . . . . 8  |-  ( ph  ->  ( X  X.  {
0 } )  =  ( x  e.  X  |->  0 ) )
7331, 70, 723eqtr4d 2666 . . . . . . 7  |-  ( ph  ->  ( ( S  _D  ( S  X.  { A } ) )  |`  ( ( int `  (
( TopOpen ` fld )t  S ) ) `  X ) )  =  ( X  X.  {
0 } ) )
7424, 30, 733eqtr3d 2664 . . . . . 6  |-  ( ph  ->  ( S  _D  ( X  X.  { A }
) )  =  ( X  X.  { 0 } ) )
7574feq1d 6030 . . . . 5  |-  ( ph  ->  ( ( S  _D  ( X  X.  { A } ) ) : X --> { 0 }  <-> 
( X  X.  {
0 } ) : X --> { 0 } ) )
769, 75mpbiri 248 . . . 4  |-  ( ph  ->  ( S  _D  ( X  X.  { A }
) ) : X --> { 0 } )
77 fdm 6051 . . . 4  |-  ( ( S  _D  ( X  X.  { A }
) ) : X --> { 0 }  ->  dom  ( S  _D  ( X  X.  { A }
) )  =  X )
7876, 77syl 17 . . 3  |-  ( ph  ->  dom  ( S  _D  ( X  X.  { A } ) )  =  X )
791, 6, 7, 78, 17dvmulf 23706 . 2  |-  ( ph  ->  ( S  _D  (
( X  X.  { A } )  oF  x.  F ) )  =  ( ( ( S  _D  ( X  X.  { A }
) )  oF  x.  F )  oF  +  ( ( S  _D  F )  oF  x.  ( X  X.  { A }
) ) ) )
80 sseqin2 3817 . . . . . 6  |-  ( X 
C_  S  <->  ( S  i^i  X )  =  X )
8120, 80sylib 208 . . . . 5  |-  ( ph  ->  ( S  i^i  X
)  =  X )
8281mpteq1d 4738 . . . 4  |-  ( ph  ->  ( x  e.  ( S  i^i  X ) 
|->  ( A  x.  ( F `  x )
) )  =  ( x  e.  X  |->  ( A  x.  ( F `
 x ) ) ) )
83 ffn 6045 . . . . . 6  |-  ( ( S  X.  { A } ) : S --> { A }  ->  ( S  X.  { A }
)  Fn  S )
8413, 83syl 17 . . . . 5  |-  ( ph  ->  ( S  X.  { A } )  Fn  S
)
85 ffn 6045 . . . . . 6  |-  ( F : X --> CC  ->  F  Fn  X )
867, 85syl 17 . . . . 5  |-  ( ph  ->  F  Fn  X )
871, 20ssexd 4805 . . . . 5  |-  ( ph  ->  X  e.  _V )
88 eqid 2622 . . . . 5  |-  ( S  i^i  X )  =  ( S  i^i  X
)
89 fvconst2g 6467 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  S )  ->  ( ( S  X.  { A } ) `  x )  =  A )
902, 89sylan 488 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  (
( S  X.  { A } ) `  x
)  =  A )
91 eqidd 2623 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  ( F `  x )  =  ( F `  x ) )
9284, 86, 1, 87, 88, 90, 91offval 6904 . . . 4  |-  ( ph  ->  ( ( S  X.  { A } )  oF  x.  F )  =  ( x  e.  ( S  i^i  X
)  |->  ( A  x.  ( F `  x ) ) ) )
93 ffn 6045 . . . . . 6  |-  ( ( X  X.  { A } ) : X --> { A }  ->  ( X  X.  { A }
)  Fn  X )
944, 93syl 17 . . . . 5  |-  ( ph  ->  ( X  X.  { A } )  Fn  X
)
95 inidm 3822 . . . . 5  |-  ( X  i^i  X )  =  X
96 fvconst2g 6467 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  X )  ->  ( ( X  X.  { A } ) `  x )  =  A )
972, 96sylan 488 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( X  X.  { A } ) `  x
)  =  A )
9894, 86, 87, 87, 95, 97, 91offval 6904 . . . 4  |-  ( ph  ->  ( ( X  X.  { A } )  oF  x.  F )  =  ( x  e.  X  |->  ( A  x.  ( F `  x ) ) ) )
9982, 92, 983eqtr4d 2666 . . 3  |-  ( ph  ->  ( ( S  X.  { A } )  oF  x.  F )  =  ( ( X  X.  { A }
)  oF  x.  F ) )
10099oveq2d 6666 . 2  |-  ( ph  ->  ( S  _D  (
( S  X.  { A } )  oF  x.  F ) )  =  ( S  _D  ( ( X  X.  { A } )  oF  x.  F ) ) )
10181mpteq1d 4738 . . 3  |-  ( ph  ->  ( x  e.  ( S  i^i  X ) 
|->  ( A  x.  (
( S  _D  F
) `  x )
) )  =  ( x  e.  X  |->  ( A  x.  ( ( S  _D  F ) `
 x ) ) ) )
102 dvfg 23670 . . . . . . 7  |-  ( S  e.  { RR ,  CC }  ->  ( S  _D  F ) : dom  ( S  _D  F
) --> CC )
1031, 102syl 17 . . . . . 6  |-  ( ph  ->  ( S  _D  F
) : dom  ( S  _D  F ) --> CC )
10417feq2d 6031 . . . . . 6  |-  ( ph  ->  ( ( S  _D  F ) : dom  ( S  _D  F
) --> CC  <->  ( S  _D  F ) : X --> CC ) )
105103, 104mpbid 222 . . . . 5  |-  ( ph  ->  ( S  _D  F
) : X --> CC )
106 ffn 6045 . . . . 5  |-  ( ( S  _D  F ) : X --> CC  ->  ( S  _D  F )  Fn  X )
107105, 106syl 17 . . . 4  |-  ( ph  ->  ( S  _D  F
)  Fn  X )
108 eqidd 2623 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  F
) `  x )  =  ( ( S  _D  F ) `  x ) )
10984, 107, 1, 87, 88, 90, 108offval 6904 . . 3  |-  ( ph  ->  ( ( S  X.  { A } )  oF  x.  ( S  _D  F ) )  =  ( x  e.  ( S  i^i  X
)  |->  ( A  x.  ( ( S  _D  F ) `  x
) ) ) )
110 0cnd 10033 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  0  e.  CC )
111 ovexd 6680 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( S  _D  F ) `  x
)  x.  A )  e.  _V )
11274oveq1d 6665 . . . . . . 7  |-  ( ph  ->  ( ( S  _D  ( X  X.  { A } ) )  oF  x.  F )  =  ( ( X  X.  { 0 } )  oF  x.  F ) )
113 0cnd 10033 . . . . . . . 8  |-  ( ph  ->  0  e.  CC )
114 mul02 10214 . . . . . . . . 9  |-  ( x  e.  CC  ->  (
0  x.  x )  =  0 )
115114adantl 482 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  ( 0  x.  x )  =  0 )
11687, 7, 113, 113, 115caofid2 6928 . . . . . . 7  |-  ( ph  ->  ( ( X  X.  { 0 } )  oF  x.  F
)  =  ( X  X.  { 0 } ) )
117112, 116eqtrd 2656 . . . . . 6  |-  ( ph  ->  ( ( S  _D  ( X  X.  { A } ) )  oF  x.  F )  =  ( X  X.  { 0 } ) )
118117, 71syl6eq 2672 . . . . 5  |-  ( ph  ->  ( ( S  _D  ( X  X.  { A } ) )  oF  x.  F )  =  ( x  e.  X  |->  0 ) )
119 fvexd 6203 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  F
) `  x )  e.  _V )
1202adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  CC )
121105feqmptd 6249 . . . . . 6  |-  ( ph  ->  ( S  _D  F
)  =  ( x  e.  X  |->  ( ( S  _D  F ) `
 x ) ) )
12228a1i 11 . . . . . 6  |-  ( ph  ->  ( X  X.  { A } )  =  ( x  e.  X  |->  A ) )
12387, 119, 120, 121, 122offval2 6914 . . . . 5  |-  ( ph  ->  ( ( S  _D  F )  oF  x.  ( X  X.  { A } ) )  =  ( x  e.  X  |->  ( ( ( S  _D  F ) `
 x )  x.  A ) ) )
12487, 110, 111, 118, 123offval2 6914 . . . 4  |-  ( ph  ->  ( ( ( S  _D  ( X  X.  { A } ) )  oF  x.  F
)  oF  +  ( ( S  _D  F )  oF  x.  ( X  X.  { A } ) ) )  =  ( x  e.  X  |->  ( 0  +  ( ( ( S  _D  F ) `
 x )  x.  A ) ) ) )
125105ffvelrnda 6359 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  (
( S  _D  F
) `  x )  e.  CC )
126125, 120mulcld 10060 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( S  _D  F ) `  x
)  x.  A )  e.  CC )
127126addid2d 10237 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  (
0  +  ( ( ( S  _D  F
) `  x )  x.  A ) )  =  ( ( ( S  _D  F ) `  x )  x.  A
) )
128125, 120mulcomd 10061 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  (
( ( S  _D  F ) `  x
)  x.  A )  =  ( A  x.  ( ( S  _D  F ) `  x
) ) )
129127, 128eqtrd 2656 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  (
0  +  ( ( ( S  _D  F
) `  x )  x.  A ) )  =  ( A  x.  (
( S  _D  F
) `  x )
) )
130129mpteq2dva 4744 . . . 4  |-  ( ph  ->  ( x  e.  X  |->  ( 0  +  ( ( ( S  _D  F ) `  x
)  x.  A ) ) )  =  ( x  e.  X  |->  ( A  x.  ( ( S  _D  F ) `
 x ) ) ) )
131124, 130eqtrd 2656 . . 3  |-  ( ph  ->  ( ( ( S  _D  ( X  X.  { A } ) )  oF  x.  F
)  oF  +  ( ( S  _D  F )  oF  x.  ( X  X.  { A } ) ) )  =  ( x  e.  X  |->  ( A  x.  ( ( S  _D  F ) `  x ) ) ) )
132101, 109, 1313eqtr4d 2666 . 2  |-  ( ph  ->  ( ( S  X.  { A } )  oF  x.  ( S  _D  F ) )  =  ( ( ( S  _D  ( X  X.  { A }
) )  oF  x.  F )  oF  +  ( ( S  _D  F )  oF  x.  ( X  X.  { A }
) ) ) )
13379, 100, 1323eqtr4d 2666 1  |-  ( ph  ->  ( S  _D  (
( S  X.  { A } )  oF  x.  F ) )  =  ( ( S  X.  { A }
)  oF  x.  ( S  _D  F
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200    i^i cin 3573    C_ wss 3574   {csn 4177   {cpr 4179   U.cuni 4436    |-> cmpt 4729    X. cxp 5112   dom cdm 5114    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    oFcof 6895   CCcc 9934   RRcr 9935   0cc0 9936    + caddc 9939    x. cmul 9941   ↾t crest 16081   TopOpenctopn 16082  ℂfldccnfld 19746   Topctop 20698  TopOnctopon 20715   intcnt 20821    _D cdv 23627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-submnd 17336  df-mulg 17541  df-cntz 17750  df-cmn 18195  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-xms 22125  df-ms 22126  df-tms 22127  df-cncf 22681  df-limc 23630  df-dv 23631
This theorem is referenced by:  dvsinax  40127
  Copyright terms: Public domain W3C validator