![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0plef | Structured version Visualization version GIF version |
Description: Two ways to say that the function 𝐹 on the reals is nonnegative. (Contributed by Mario Carneiro, 17-Aug-2014.) |
Ref | Expression |
---|---|
0plef | ⊢ (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘𝑟 ≤ 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rge0ssre 12280 | . . 3 ⊢ (0[,)+∞) ⊆ ℝ | |
2 | fss 6056 | . . 3 ⊢ ((𝐹:ℝ⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℝ) → 𝐹:ℝ⟶ℝ) | |
3 | 1, 2 | mpan2 707 | . 2 ⊢ (𝐹:ℝ⟶(0[,)+∞) → 𝐹:ℝ⟶ℝ) |
4 | ffvelrn 6357 | . . . . 5 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) | |
5 | elrege0 12278 | . . . . . 6 ⊢ ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 0 ≤ (𝐹‘𝑥))) | |
6 | 5 | baib 944 | . . . . 5 ⊢ ((𝐹‘𝑥) ∈ ℝ → ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ 0 ≤ (𝐹‘𝑥))) |
7 | 4, 6 | syl 17 | . . . 4 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → ((𝐹‘𝑥) ∈ (0[,)+∞) ↔ 0 ≤ (𝐹‘𝑥))) |
8 | 7 | ralbidva 2985 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,)+∞) ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹‘𝑥))) |
9 | ffn 6045 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → 𝐹 Fn ℝ) | |
10 | ffnfv 6388 | . . . . 5 ⊢ (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹 Fn ℝ ∧ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,)+∞))) | |
11 | 10 | baib 944 | . . . 4 ⊢ (𝐹 Fn ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,)+∞))) |
12 | 9, 11 | syl 17 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ ∀𝑥 ∈ ℝ (𝐹‘𝑥) ∈ (0[,)+∞))) |
13 | 0cn 10032 | . . . . . . 7 ⊢ 0 ∈ ℂ | |
14 | fnconstg 6093 | . . . . . . 7 ⊢ (0 ∈ ℂ → (ℂ × {0}) Fn ℂ) | |
15 | 13, 14 | ax-mp 5 | . . . . . 6 ⊢ (ℂ × {0}) Fn ℂ |
16 | df-0p 23437 | . . . . . . 7 ⊢ 0𝑝 = (ℂ × {0}) | |
17 | 16 | fneq1i 5985 | . . . . . 6 ⊢ (0𝑝 Fn ℂ ↔ (ℂ × {0}) Fn ℂ) |
18 | 15, 17 | mpbir 221 | . . . . 5 ⊢ 0𝑝 Fn ℂ |
19 | 18 | a1i 11 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → 0𝑝 Fn ℂ) |
20 | cnex 10017 | . . . . 5 ⊢ ℂ ∈ V | |
21 | 20 | a1i 11 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → ℂ ∈ V) |
22 | reex 10027 | . . . . 5 ⊢ ℝ ∈ V | |
23 | 22 | a1i 11 | . . . 4 ⊢ (𝐹:ℝ⟶ℝ → ℝ ∈ V) |
24 | ax-resscn 9993 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
25 | sseqin2 3817 | . . . . 5 ⊢ (ℝ ⊆ ℂ ↔ (ℂ ∩ ℝ) = ℝ) | |
26 | 24, 25 | mpbi 220 | . . . 4 ⊢ (ℂ ∩ ℝ) = ℝ |
27 | 0pval 23438 | . . . . 5 ⊢ (𝑥 ∈ ℂ → (0𝑝‘𝑥) = 0) | |
28 | 27 | adantl 482 | . . . 4 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℂ) → (0𝑝‘𝑥) = 0) |
29 | eqidd 2623 | . . . 4 ⊢ ((𝐹:ℝ⟶ℝ ∧ 𝑥 ∈ ℝ) → (𝐹‘𝑥) = (𝐹‘𝑥)) | |
30 | 19, 9, 21, 23, 26, 28, 29 | ofrfval 6905 | . . 3 ⊢ (𝐹:ℝ⟶ℝ → (0𝑝 ∘𝑟 ≤ 𝐹 ↔ ∀𝑥 ∈ ℝ 0 ≤ (𝐹‘𝑥))) |
31 | 8, 12, 30 | 3bitr4d 300 | . 2 ⊢ (𝐹:ℝ⟶ℝ → (𝐹:ℝ⟶(0[,)+∞) ↔ 0𝑝 ∘𝑟 ≤ 𝐹)) |
32 | 3, 31 | biadan2 674 | 1 ⊢ (𝐹:ℝ⟶(0[,)+∞) ↔ (𝐹:ℝ⟶ℝ ∧ 0𝑝 ∘𝑟 ≤ 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 ∩ cin 3573 ⊆ wss 3574 {csn 4177 class class class wbr 4653 × cxp 5112 Fn wfn 5883 ⟶wf 5884 ‘cfv 5888 (class class class)co 6650 ∘𝑟 cofr 6896 ℂcc 9934 ℝcr 9935 0cc0 9936 +∞cpnf 10071 ≤ cle 10075 [,)cico 12177 0𝑝c0p 23436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-i2m1 10004 ax-1ne0 10005 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-ofr 6898 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-ico 12181 df-0p 23437 |
This theorem is referenced by: itg2i1fseq 23522 itg2addlem 23525 ftc1anclem8 33492 |
Copyright terms: Public domain | W3C validator |