| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑃‘𝑛) = (𝑃‘𝑚)) |
| 2 | 1 | fveq1d 6193 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → ((𝑃‘𝑛)‘𝑥) = ((𝑃‘𝑚)‘𝑥)) |
| 3 | 2 | cbvmptv 4750 |
. . . . . . 7
⊢ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑥)) |
| 4 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝑃‘𝑚)‘𝑥) = ((𝑃‘𝑚)‘𝑦)) |
| 5 | 4 | mpteq2dv 4745 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦))) |
| 6 | 3, 5 | syl5eq 2668 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) = (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦))) |
| 7 | 6 | rneqd 5353 |
. . . . 5
⊢ (𝑥 = 𝑦 → ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) = ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦))) |
| 8 | 7 | supeq1d 8352 |
. . . 4
⊢ (𝑥 = 𝑦 → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)), ℝ, < )) |
| 9 | 8 | cbvmptv 4750 |
. . 3
⊢ (𝑥 ∈ ℝ ↦ sup(ran
(𝑛 ∈ ℕ ↦
((𝑃‘𝑛)‘𝑥)), ℝ, < )) = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)), ℝ, < )) |
| 10 | | itg2i1fseq.3 |
. . . . 5
⊢ (𝜑 → 𝑃:ℕ⟶dom
∫1) |
| 11 | 10 | ffvelrnda 6359 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚) ∈ dom
∫1) |
| 12 | | i1fmbf 23442 |
. . . 4
⊢ ((𝑃‘𝑚) ∈ dom ∫1 → (𝑃‘𝑚) ∈ MblFn) |
| 13 | 11, 12 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚) ∈ MblFn) |
| 14 | | i1ff 23443 |
. . . . 5
⊢ ((𝑃‘𝑚) ∈ dom ∫1 → (𝑃‘𝑚):ℝ⟶ℝ) |
| 15 | 11, 14 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚):ℝ⟶ℝ) |
| 16 | | itg2i1fseq.4 |
. . . . . 6
⊢ (𝜑 → ∀𝑛 ∈ ℕ (0𝑝
∘𝑟 ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1)))) |
| 17 | 1 | breq2d 4665 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → (0𝑝
∘𝑟 ≤ (𝑃‘𝑛) ↔ 0𝑝
∘𝑟 ≤ (𝑃‘𝑚))) |
| 18 | | oveq1 6657 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → (𝑛 + 1) = (𝑚 + 1)) |
| 19 | 18 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑛 = 𝑚 → (𝑃‘(𝑛 + 1)) = (𝑃‘(𝑚 + 1))) |
| 20 | 1, 19 | breq12d 4666 |
. . . . . . . 8
⊢ (𝑛 = 𝑚 → ((𝑃‘𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1)) ↔ (𝑃‘𝑚) ∘𝑟 ≤ (𝑃‘(𝑚 + 1)))) |
| 21 | 17, 20 | anbi12d 747 |
. . . . . . 7
⊢ (𝑛 = 𝑚 → ((0𝑝
∘𝑟 ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1))) ↔ (0𝑝
∘𝑟 ≤ (𝑃‘𝑚) ∧ (𝑃‘𝑚) ∘𝑟 ≤ (𝑃‘(𝑚 + 1))))) |
| 22 | 21 | rspccva 3308 |
. . . . . 6
⊢
((∀𝑛 ∈
ℕ (0𝑝 ∘𝑟 ≤ (𝑃‘𝑛) ∧ (𝑃‘𝑛) ∘𝑟 ≤ (𝑃‘(𝑛 + 1))) ∧ 𝑚 ∈ ℕ) →
(0𝑝 ∘𝑟 ≤ (𝑃‘𝑚) ∧ (𝑃‘𝑚) ∘𝑟 ≤ (𝑃‘(𝑚 + 1)))) |
| 23 | 16, 22 | sylan 488 |
. . . . 5
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) →
(0𝑝 ∘𝑟 ≤ (𝑃‘𝑚) ∧ (𝑃‘𝑚) ∘𝑟 ≤ (𝑃‘(𝑚 + 1)))) |
| 24 | 23 | simpld 475 |
. . . 4
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 0𝑝
∘𝑟 ≤ (𝑃‘𝑚)) |
| 25 | | 0plef 23439 |
. . . 4
⊢ ((𝑃‘𝑚):ℝ⟶(0[,)+∞) ↔
((𝑃‘𝑚):ℝ⟶ℝ ∧
0𝑝 ∘𝑟 ≤ (𝑃‘𝑚))) |
| 26 | 15, 24, 25 | sylanbrc 698 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚):ℝ⟶(0[,)+∞)) |
| 27 | 23 | simprd 479 |
. . 3
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚) ∘𝑟 ≤ (𝑃‘(𝑚 + 1))) |
| 28 | | rge0ssre 12280 |
. . . . 5
⊢
(0[,)+∞) ⊆ ℝ |
| 29 | | itg2i1fseq.2 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℝ⟶(0[,)+∞)) |
| 30 | 29 | ffvelrnda 6359 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ (0[,)+∞)) |
| 31 | 28, 30 | sseldi 3601 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) ∈ ℝ) |
| 32 | | itg2i1fseq.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ MblFn) |
| 33 | | itg2i1fseq.5 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑥 ∈ ℝ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥)) |
| 34 | 32, 29, 10, 16, 33 | itg2i1fseqle 23521 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚) ∘𝑟 ≤ 𝐹) |
| 35 | | ffn 6045 |
. . . . . . . . . 10
⊢ ((𝑃‘𝑚):ℝ⟶ℝ → (𝑃‘𝑚) Fn ℝ) |
| 36 | 15, 35 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘𝑚) Fn ℝ) |
| 37 | | ffn 6045 |
. . . . . . . . . . 11
⊢ (𝐹:ℝ⟶(0[,)+∞)
→ 𝐹 Fn
ℝ) |
| 38 | 29, 37 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 Fn ℝ) |
| 39 | 38 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → 𝐹 Fn ℝ) |
| 40 | | reex 10027 |
. . . . . . . . . 10
⊢ ℝ
∈ V |
| 41 | 40 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ℝ ∈
V) |
| 42 | | inidm 3822 |
. . . . . . . . 9
⊢ (ℝ
∩ ℝ) = ℝ |
| 43 | | eqidd 2623 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘𝑚)‘𝑦) = ((𝑃‘𝑚)‘𝑦)) |
| 44 | | eqidd 2623 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → (𝐹‘𝑦) = (𝐹‘𝑦)) |
| 45 | 36, 39, 41, 41, 42, 43, 44 | ofrfval 6905 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑃‘𝑚) ∘𝑟 ≤ 𝐹 ↔ ∀𝑦 ∈ ℝ ((𝑃‘𝑚)‘𝑦) ≤ (𝐹‘𝑦))) |
| 46 | 34, 45 | mpbid 222 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃‘𝑚)‘𝑦) ≤ (𝐹‘𝑦)) |
| 47 | 46 | r19.21bi 2932 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘𝑚)‘𝑦) ≤ (𝐹‘𝑦)) |
| 48 | 47 | an32s 846 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃‘𝑚)‘𝑦) ≤ (𝐹‘𝑦)) |
| 49 | 48 | ralrimiva 2966 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ∀𝑚 ∈ ℕ ((𝑃‘𝑚)‘𝑦) ≤ (𝐹‘𝑦)) |
| 50 | | breq2 4657 |
. . . . . 6
⊢ (𝑧 = (𝐹‘𝑦) → (((𝑃‘𝑚)‘𝑦) ≤ 𝑧 ↔ ((𝑃‘𝑚)‘𝑦) ≤ (𝐹‘𝑦))) |
| 51 | 50 | ralbidv 2986 |
. . . . 5
⊢ (𝑧 = (𝐹‘𝑦) → (∀𝑚 ∈ ℕ ((𝑃‘𝑚)‘𝑦) ≤ 𝑧 ↔ ∀𝑚 ∈ ℕ ((𝑃‘𝑚)‘𝑦) ≤ (𝐹‘𝑦))) |
| 52 | 51 | rspcev 3309 |
. . . 4
⊢ (((𝐹‘𝑦) ∈ ℝ ∧ ∀𝑚 ∈ ℕ ((𝑃‘𝑚)‘𝑦) ≤ (𝐹‘𝑦)) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃‘𝑚)‘𝑦) ≤ 𝑧) |
| 53 | 31, 49, 52 | syl2anc 693 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃‘𝑚)‘𝑦) ≤ 𝑧) |
| 54 | 1 | fveq2d 6195 |
. . . . . 6
⊢ (𝑛 = 𝑚 → (∫2‘(𝑃‘𝑛)) = (∫2‘(𝑃‘𝑚))) |
| 55 | 54 | cbvmptv 4750 |
. . . . 5
⊢ (𝑛 ∈ ℕ ↦
(∫2‘(𝑃‘𝑛))) = (𝑚 ∈ ℕ ↦
(∫2‘(𝑃‘𝑚))) |
| 56 | 55 | rneqi 5352 |
. . . 4
⊢ ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝑃‘𝑛))) = ran (𝑚 ∈ ℕ ↦
(∫2‘(𝑃‘𝑚))) |
| 57 | 56 | supeq1i 8353 |
. . 3
⊢ sup(ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝑃‘𝑛))), ℝ*, < ) = sup(ran
(𝑚 ∈ ℕ ↦
(∫2‘(𝑃‘𝑚))), ℝ*, <
) |
| 58 | 9, 13, 26, 27, 53, 57 | itg2mono 23520 |
. 2
⊢ (𝜑 →
(∫2‘(𝑥
∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)), ℝ, < ))) = sup(ran (𝑛 ∈ ℕ ↦
(∫2‘(𝑃‘𝑛))), ℝ*, <
)) |
| 59 | 29 | feqmptd 6249 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹‘𝑦))) |
| 60 | 1 | fveq1d 6193 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑚 → ((𝑃‘𝑛)‘𝑦) = ((𝑃‘𝑚)‘𝑦)) |
| 61 | 60 | cbvmptv 4750 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) = (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)) |
| 62 | 61 | rneqi 5352 |
. . . . . . . 8
⊢ ran
(𝑛 ∈ ℕ ↦
((𝑃‘𝑛)‘𝑦)) = ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)) |
| 63 | 62 | supeq1i 8353 |
. . . . . . 7
⊢ sup(ran
(𝑛 ∈ ℕ ↦
((𝑃‘𝑛)‘𝑦)), ℝ, < ) = sup(ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)), ℝ, < ) |
| 64 | | nnuz 11723 |
. . . . . . . . 9
⊢ ℕ =
(ℤ≥‘1) |
| 65 | | 1zzd 11408 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → 1 ∈
ℤ) |
| 66 | 15 | ffvelrnda 6359 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘𝑚)‘𝑦) ∈ ℝ) |
| 67 | 66 | an32s 846 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃‘𝑚)‘𝑦) ∈ ℝ) |
| 68 | 67, 61 | fmptd 6385 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)):ℕ⟶ℝ) |
| 69 | | peano2nn 11032 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ ℕ → (𝑚 + 1) ∈
ℕ) |
| 70 | | ffvelrn 6357 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑃:ℕ⟶dom
∫1 ∧ (𝑚
+ 1) ∈ ℕ) → (𝑃‘(𝑚 + 1)) ∈ dom
∫1) |
| 71 | 10, 69, 70 | syl2an 494 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘(𝑚 + 1)) ∈ dom
∫1) |
| 72 | | i1ff 23443 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃‘(𝑚 + 1)) ∈ dom ∫1 →
(𝑃‘(𝑚 +
1)):ℝ⟶ℝ) |
| 73 | 71, 72 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘(𝑚 +
1)):ℝ⟶ℝ) |
| 74 | | ffn 6045 |
. . . . . . . . . . . . . . 15
⊢ ((𝑃‘(𝑚 + 1)):ℝ⟶ℝ → (𝑃‘(𝑚 + 1)) Fn ℝ) |
| 75 | 73, 74 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (𝑃‘(𝑚 + 1)) Fn ℝ) |
| 76 | | eqidd 2623 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘(𝑚 + 1))‘𝑦) = ((𝑃‘(𝑚 + 1))‘𝑦)) |
| 77 | 36, 75, 41, 41, 42, 43, 76 | ofrfval 6905 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑃‘𝑚) ∘𝑟 ≤ (𝑃‘(𝑚 + 1)) ↔ ∀𝑦 ∈ ℝ ((𝑃‘𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦))) |
| 78 | 27, 77 | mpbid 222 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ∀𝑦 ∈ ℝ ((𝑃‘𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦)) |
| 79 | 78 | r19.21bi 2932 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑦 ∈ ℝ) → ((𝑃‘𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦)) |
| 80 | 79 | an32s 846 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑃‘𝑚)‘𝑦) ≤ ((𝑃‘(𝑚 + 1))‘𝑦)) |
| 81 | | eqid 2622 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) = (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) |
| 82 | | fvex 6201 |
. . . . . . . . . . . 12
⊢ ((𝑃‘𝑚)‘𝑦) ∈ V |
| 83 | 60, 81, 82 | fvmpt 6282 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑚) = ((𝑃‘𝑚)‘𝑦)) |
| 84 | 83 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑚) = ((𝑃‘𝑚)‘𝑦)) |
| 85 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (𝑚 + 1) → (𝑃‘𝑛) = (𝑃‘(𝑚 + 1))) |
| 86 | 85 | fveq1d 6193 |
. . . . . . . . . . . . 13
⊢ (𝑛 = (𝑚 + 1) → ((𝑃‘𝑛)‘𝑦) = ((𝑃‘(𝑚 + 1))‘𝑦)) |
| 87 | | fvex 6201 |
. . . . . . . . . . . . 13
⊢ ((𝑃‘(𝑚 + 1))‘𝑦) ∈ V |
| 88 | 86, 81, 87 | fvmpt 6282 |
. . . . . . . . . . . 12
⊢ ((𝑚 + 1) ∈ ℕ →
((𝑛 ∈ ℕ ↦
((𝑃‘𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦)) |
| 89 | 69, 88 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑚 ∈ ℕ → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦)) |
| 90 | 89 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘(𝑚 + 1)) = ((𝑃‘(𝑚 + 1))‘𝑦)) |
| 91 | 80, 84, 90 | 3brtr4d 4685 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ) ∧ 𝑚 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑚) ≤ ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘(𝑚 + 1))) |
| 92 | 83 | breq1d 4663 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ ℕ → (((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ((𝑃‘𝑚)‘𝑦) ≤ 𝑧)) |
| 93 | 92 | ralbiia 2979 |
. . . . . . . . . . 11
⊢
(∀𝑚 ∈
ℕ ((𝑛 ∈ ℕ
↦ ((𝑃‘𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ∀𝑚 ∈ ℕ ((𝑃‘𝑚)‘𝑦) ≤ 𝑧) |
| 94 | 93 | rexbii 3041 |
. . . . . . . . . 10
⊢
(∃𝑧 ∈
ℝ ∀𝑚 ∈
ℕ ((𝑛 ∈ ℕ
↦ ((𝑃‘𝑛)‘𝑦))‘𝑚) ≤ 𝑧 ↔ ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑃‘𝑚)‘𝑦) ≤ 𝑧) |
| 95 | 53, 94 | sylibr 224 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → ∃𝑧 ∈ ℝ ∀𝑚 ∈ ℕ ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))‘𝑚) ≤ 𝑧) |
| 96 | 64, 65, 68, 91, 95 | climsup 14400 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) ⇝ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)), ℝ, < )) |
| 97 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝑃‘𝑛)‘𝑥) = ((𝑃‘𝑛)‘𝑦)) |
| 98 | 97 | mpteq2dv 4745 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) = (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦))) |
| 99 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝐹‘𝑥) = (𝐹‘𝑦)) |
| 100 | 98, 99 | breq12d 4666 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥) ↔ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦))) |
| 101 | 100 | rspccva 3308 |
. . . . . . . . 9
⊢
((∀𝑥 ∈
ℝ (𝑛 ∈ ℕ
↦ ((𝑃‘𝑛)‘𝑥)) ⇝ (𝐹‘𝑥) ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) |
| 102 | 33, 101 | sylan 488 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) |
| 103 | | climuni 14283 |
. . . . . . . 8
⊢ (((𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) ⇝ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)), ℝ, < ) ∧ (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)) ⇝ (𝐹‘𝑦)) → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)), ℝ, < ) = (𝐹‘𝑦)) |
| 104 | 96, 102, 103 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑦)), ℝ, < ) = (𝐹‘𝑦)) |
| 105 | 63, 104 | syl5eqr 2670 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ) → sup(ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)), ℝ, < ) = (𝐹‘𝑦)) |
| 106 | 105 | mpteq2dva 4744 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)), ℝ, < )) = (𝑦 ∈ ℝ ↦ (𝐹‘𝑦))) |
| 107 | 59, 106 | eqtr4d 2659 |
. . . 4
⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℝ ↦ sup(ran (𝑚 ∈ ℕ ↦ ((𝑃‘𝑚)‘𝑦)), ℝ, < ))) |
| 108 | 107, 9 | syl6eqr 2674 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)), ℝ, < ))) |
| 109 | 108 | fveq2d 6195 |
. 2
⊢ (𝜑 →
(∫2‘𝐹)
= (∫2‘(𝑥 ∈ ℝ ↦ sup(ran (𝑛 ∈ ℕ ↦ ((𝑃‘𝑛)‘𝑥)), ℝ, < )))) |
| 110 | | itg2itg1 23503 |
. . . . . . . 8
⊢ (((𝑃‘𝑚) ∈ dom ∫1 ∧
0𝑝 ∘𝑟 ≤ (𝑃‘𝑚)) → (∫2‘(𝑃‘𝑚)) = (∫1‘(𝑃‘𝑚))) |
| 111 | 11, 24, 110 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) →
(∫2‘(𝑃‘𝑚)) = (∫1‘(𝑃‘𝑚))) |
| 112 | 111 | mpteq2dva 4744 |
. . . . . 6
⊢ (𝜑 → (𝑚 ∈ ℕ ↦
(∫2‘(𝑃‘𝑚))) = (𝑚 ∈ ℕ ↦
(∫1‘(𝑃‘𝑚)))) |
| 113 | | itg2i1fseq.6 |
. . . . . 6
⊢ 𝑆 = (𝑚 ∈ ℕ ↦
(∫1‘(𝑃‘𝑚))) |
| 114 | 112, 113 | syl6reqr 2675 |
. . . . 5
⊢ (𝜑 → 𝑆 = (𝑚 ∈ ℕ ↦
(∫2‘(𝑃‘𝑚)))) |
| 115 | 114, 55 | syl6eqr 2674 |
. . . 4
⊢ (𝜑 → 𝑆 = (𝑛 ∈ ℕ ↦
(∫2‘(𝑃‘𝑛)))) |
| 116 | 115 | rneqd 5353 |
. . 3
⊢ (𝜑 → ran 𝑆 = ran (𝑛 ∈ ℕ ↦
(∫2‘(𝑃‘𝑛)))) |
| 117 | 116 | supeq1d 8352 |
. 2
⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) = sup(ran
(𝑛 ∈ ℕ ↦
(∫2‘(𝑃‘𝑛))), ℝ*, <
)) |
| 118 | 58, 109, 117 | 3eqtr4d 2666 |
1
⊢ (𝜑 →
(∫2‘𝐹)
= sup(ran 𝑆,
ℝ*, < )) |