Proof of Theorem ftc1anclem8
| Step | Hyp | Ref
| Expression |
| 1 | | ftc1anc.g |
. . 3
⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ ∫(𝐴(,)𝑥)(𝐹‘𝑡) d𝑡) |
| 2 | | ftc1anc.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | | ftc1anc.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 4 | | ftc1anc.le |
. . 3
⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| 5 | | ftc1anc.s |
. . 3
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ 𝐷) |
| 6 | | ftc1anc.d |
. . 3
⊢ (𝜑 → 𝐷 ⊆ ℝ) |
| 7 | | ftc1anc.i |
. . 3
⊢ (𝜑 → 𝐹 ∈
𝐿1) |
| 8 | | ftc1anc.f |
. . 3
⊢ (𝜑 → 𝐹:𝐷⟶ℂ) |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | ftc1anclem7 33491 |
. 2
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) < ((𝑦 / 2) + (𝑦 / 2))) |
| 10 | | simplll 798 |
. . . 4
⊢
(((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) → (𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom
∫1))) |
| 11 | | 3simpa 1058 |
. . . 4
⊢ ((𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤) → (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) |
| 12 | | ioossre 12235 |
. . . . . . . . 9
⊢ (𝑢(,)𝑤) ⊆ ℝ |
| 13 | 12 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑢(,)𝑤) ⊆
ℝ) |
| 14 | | rembl 23308 |
. . . . . . . . 9
⊢ ℝ
∈ dom vol |
| 15 | 14 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ℝ ∈ dom vol) |
| 16 | | fvex 6201 |
. . . . . . . . . 10
⊢
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ V |
| 17 | | c0ex 10034 |
. . . . . . . . . 10
⊢ 0 ∈
V |
| 18 | 16, 17 | ifex 4156 |
. . . . . . . . 9
⊢ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ V |
| 19 | 18 | a1i 11 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ (𝑢(,)𝑤)) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ V) |
| 20 | | eldifn 3733 |
. . . . . . . . . 10
⊢ (𝑡 ∈ (ℝ ∖ (𝑢(,)𝑤)) → ¬ 𝑡 ∈ (𝑢(,)𝑤)) |
| 21 | 20 | adantl 482 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ (ℝ
∖ (𝑢(,)𝑤))) → ¬ 𝑡 ∈ (𝑢(,)𝑤)) |
| 22 | 21 | iffalsed 4097 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ (ℝ
∖ (𝑢(,)𝑤))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = 0) |
| 23 | | iftrue 4092 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
| 24 | 23 | mpteq2ia 4740 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ (𝑢(,)𝑤) ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = (𝑡 ∈ (𝑢(,)𝑤) ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
| 25 | | resmpt 5449 |
. . . . . . . . . . . 12
⊢ ((𝑢(,)𝑤) ⊆ ℝ → ((𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↾ (𝑢(,)𝑤)) = (𝑡 ∈ (𝑢(,)𝑤) ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
| 26 | 12, 25 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((𝑡 ∈ ℝ ↦
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↾ (𝑢(,)𝑤)) = (𝑡 ∈ (𝑢(,)𝑤) ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
| 27 | 24, 26 | eqtr4i 2647 |
. . . . . . . . . 10
⊢ (𝑡 ∈ (𝑢(,)𝑤) ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = ((𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↾ (𝑢(,)𝑤)) |
| 28 | | i1ff 23443 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 ∈ dom ∫1
→ 𝑓:ℝ⟶ℝ) |
| 29 | 28 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑓‘𝑡) ∈
ℝ) |
| 30 | 29 | recnd 10068 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑓‘𝑡) ∈
ℂ) |
| 31 | | ax-icn 9995 |
. . . . . . . . . . . . . . . . 17
⊢ i ∈
ℂ |
| 32 | | i1ff 23443 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 ∈ dom ∫1
→ 𝑔:ℝ⟶ℝ) |
| 33 | 32 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑔‘𝑡) ∈
ℝ) |
| 34 | 33 | recnd 10068 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (𝑔‘𝑡) ∈
ℂ) |
| 35 | | mulcl 10020 |
. . . . . . . . . . . . . . . . 17
⊢ ((i
∈ ℂ ∧ (𝑔‘𝑡) ∈ ℂ) → (i · (𝑔‘𝑡)) ∈ ℂ) |
| 36 | 31, 34, 35 | sylancr 695 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (i · (𝑔‘𝑡)) ∈ ℂ) |
| 37 | | addcl 10018 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓‘𝑡) ∈ ℂ ∧ (i · (𝑔‘𝑡)) ∈ ℂ) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
| 38 | 30, 36, 37 | syl2an 494 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝑔 ∈ dom
∫1 ∧ 𝑡
∈ ℝ)) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
| 39 | 38 | anandirs 874 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
| 40 | | reex 10027 |
. . . . . . . . . . . . . . . 16
⊢ ℝ
∈ V |
| 41 | 40 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ℝ ∈ V) |
| 42 | 29 | adantlr 751 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (𝑓‘𝑡) ∈ ℝ) |
| 43 | 36 | adantll 750 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (i · (𝑔‘𝑡)) ∈ ℂ) |
| 44 | 28 | feqmptd 6249 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ dom ∫1
→ 𝑓 = (𝑡 ∈ ℝ ↦ (𝑓‘𝑡))) |
| 45 | 44 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 𝑓
= (𝑡 ∈ ℝ ↦
(𝑓‘𝑡))) |
| 46 | 40 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 ∈ dom ∫1
→ ℝ ∈ V) |
| 47 | 31 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ i ∈ ℂ) |
| 48 | | fconstmpt 5163 |
. . . . . . . . . . . . . . . . . 18
⊢ (ℝ
× {i}) = (𝑡 ∈
ℝ ↦ i) |
| 49 | 48 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 ∈ dom ∫1
→ (ℝ × {i}) = (𝑡 ∈ ℝ ↦ i)) |
| 50 | 32 | feqmptd 6249 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 ∈ dom ∫1
→ 𝑔 = (𝑡 ∈ ℝ ↦ (𝑔‘𝑡))) |
| 51 | 46, 47, 33, 49, 50 | offval2 6914 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 ∈ dom ∫1
→ ((ℝ × {i}) ∘𝑓 · 𝑔) = (𝑡 ∈ ℝ ↦ (i · (𝑔‘𝑡)))) |
| 52 | 51 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((ℝ × {i}) ∘𝑓
· 𝑔) = (𝑡 ∈ ℝ ↦ (i
· (𝑔‘𝑡)))) |
| 53 | 41, 42, 43, 45, 52 | offval2 6914 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑓 ∘𝑓 + ((ℝ
× {i}) ∘𝑓 · 𝑔)) = (𝑡 ∈ ℝ ↦ ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
| 54 | | absf 14077 |
. . . . . . . . . . . . . . . 16
⊢
abs:ℂ⟶ℝ |
| 55 | 54 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → abs:ℂ⟶ℝ) |
| 56 | 55 | feqmptd 6249 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥))) |
| 57 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) → (abs‘𝑥) = (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
| 58 | 39, 53, 56, 57 | fmptco 6396 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ (𝑓 ∘𝑓 + ((ℝ
× {i}) ∘𝑓 · 𝑔))) = (𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
| 59 | | ftc1anclem3 33487 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ (𝑓 ∘𝑓 + ((ℝ
× {i}) ∘𝑓 · 𝑔))) ∈ dom
∫1) |
| 60 | 58, 59 | eqeltrrd 2702 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ dom
∫1) |
| 61 | | i1fmbf 23442 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ ℝ ↦
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ dom ∫1 →
(𝑡 ∈ ℝ ↦
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ MblFn) |
| 62 | 60, 61 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ MblFn) |
| 63 | | ioombl 23333 |
. . . . . . . . . . 11
⊢ (𝑢(,)𝑤) ∈ dom vol |
| 64 | | mbfres 23411 |
. . . . . . . . . . 11
⊢ (((𝑡 ∈ ℝ ↦
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ MblFn ∧ (𝑢(,)𝑤) ∈ dom vol) → ((𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↾ (𝑢(,)𝑤)) ∈ MblFn) |
| 65 | 62, 63, 64 | sylancl 694 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↾ (𝑢(,)𝑤)) ∈ MblFn) |
| 66 | 27, 65 | syl5eqel 2705 |
. . . . . . . . 9
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ (𝑢(,)𝑤) ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ MblFn) |
| 67 | 66 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ (𝑢(,)𝑤) ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ MblFn) |
| 68 | 13, 15, 19, 22, 67 | mbfss 23413 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ MblFn) |
| 69 | 68 | adantr 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ MblFn) |
| 70 | 39 | abscld 14175 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℝ) |
| 71 | 39 | absge0d 14183 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → 0 ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
| 72 | | elrege0 12278 |
. . . . . . . . . 10
⊢
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,)+∞) ↔
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℝ ∧ 0 ≤
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
| 73 | 70, 71, 72 | sylanbrc 698 |
. . . . . . . . 9
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,)+∞)) |
| 74 | | 0e0icopnf 12282 |
. . . . . . . . 9
⊢ 0 ∈
(0[,)+∞) |
| 75 | | ifcl 4130 |
. . . . . . . . 9
⊢
(((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,)+∞) ∧ 0 ∈
(0[,)+∞)) → if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,)+∞)) |
| 76 | 73, 74, 75 | sylancl 694 |
. . . . . . . 8
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,)+∞)) |
| 77 | | eqid 2622 |
. . . . . . . 8
⊢ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) |
| 78 | 76, 77 | fmptd 6385 |
. . . . . . 7
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,)+∞)) |
| 79 | 78 | ad2antlr 763 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,)+∞)) |
| 80 | 70 | rexrd 10089 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈
ℝ*) |
| 81 | | elxrge0 12281 |
. . . . . . . . . . 11
⊢
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,]+∞) ↔
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℝ* ∧ 0 ≤
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
| 82 | 80, 71, 81 | sylanbrc 698 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,]+∞)) |
| 83 | | 0e0iccpnf 12283 |
. . . . . . . . . 10
⊢ 0 ∈
(0[,]+∞) |
| 84 | | ifcl 4130 |
. . . . . . . . . 10
⊢
(((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,]+∞) ∧ 0 ∈
(0[,]+∞)) → if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,]+∞)) |
| 85 | 82, 83, 84 | sylancl 694 |
. . . . . . . . 9
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,]+∞)) |
| 86 | 85, 77 | fmptd 6385 |
. . . . . . . 8
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,]+∞)) |
| 87 | 86 | ad2antlr 763 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,]+∞)) |
| 88 | | ifcl 4130 |
. . . . . . . . . . 11
⊢
(((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,]+∞) ∧ 0 ∈
(0[,]+∞)) → if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,]+∞)) |
| 89 | 82, 83, 88 | sylancl 694 |
. . . . . . . . . 10
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,]+∞)) |
| 90 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) |
| 91 | 89, 90 | fmptd 6385 |
. . . . . . . . 9
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,]+∞)) |
| 92 | | ffn 6045 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:ℝ⟶ℝ →
𝑓 Fn
ℝ) |
| 93 | | frn 6053 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓:ℝ⟶ℝ →
ran 𝑓 ⊆
ℝ) |
| 94 | | ax-resscn 9993 |
. . . . . . . . . . . . . . . 16
⊢ ℝ
⊆ ℂ |
| 95 | 93, 94 | syl6ss 3615 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:ℝ⟶ℝ →
ran 𝑓 ⊆
ℂ) |
| 96 | | ffn 6045 |
. . . . . . . . . . . . . . . . 17
⊢
(abs:ℂ⟶ℝ → abs Fn ℂ) |
| 97 | 54, 96 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ abs Fn
ℂ |
| 98 | | fnco 5999 |
. . . . . . . . . . . . . . . 16
⊢ ((abs Fn
ℂ ∧ 𝑓 Fn ℝ
∧ ran 𝑓 ⊆
ℂ) → (abs ∘ 𝑓) Fn ℝ) |
| 99 | 97, 98 | mp3an1 1411 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 Fn ℝ ∧ ran 𝑓 ⊆ ℂ) → (abs
∘ 𝑓) Fn
ℝ) |
| 100 | 92, 95, 99 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (𝑓:ℝ⟶ℝ →
(abs ∘ 𝑓) Fn
ℝ) |
| 101 | 28, 100 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ dom ∫1
→ (abs ∘ 𝑓) Fn
ℝ) |
| 102 | 101 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ 𝑓) Fn ℝ) |
| 103 | | ffn 6045 |
. . . . . . . . . . . . . . 15
⊢ (𝑔:ℝ⟶ℝ →
𝑔 Fn
ℝ) |
| 104 | | frn 6053 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔:ℝ⟶ℝ →
ran 𝑔 ⊆
ℝ) |
| 105 | 104, 94 | syl6ss 3615 |
. . . . . . . . . . . . . . 15
⊢ (𝑔:ℝ⟶ℝ →
ran 𝑔 ⊆
ℂ) |
| 106 | | fnco 5999 |
. . . . . . . . . . . . . . . 16
⊢ ((abs Fn
ℂ ∧ 𝑔 Fn ℝ
∧ ran 𝑔 ⊆
ℂ) → (abs ∘ 𝑔) Fn ℝ) |
| 107 | 97, 106 | mp3an1 1411 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔 Fn ℝ ∧ ran 𝑔 ⊆ ℂ) → (abs
∘ 𝑔) Fn
ℝ) |
| 108 | 103, 105,
107 | syl2anc 693 |
. . . . . . . . . . . . . 14
⊢ (𝑔:ℝ⟶ℝ →
(abs ∘ 𝑔) Fn
ℝ) |
| 109 | 32, 108 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑔 ∈ dom ∫1
→ (abs ∘ 𝑔) Fn
ℝ) |
| 110 | 109 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ 𝑔) Fn ℝ) |
| 111 | | inidm 3822 |
. . . . . . . . . . . 12
⊢ (ℝ
∩ ℝ) = ℝ |
| 112 | 28 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 𝑓:ℝ⟶ℝ) |
| 113 | | fvco3 6275 |
. . . . . . . . . . . . 13
⊢ ((𝑓:ℝ⟶ℝ ∧
𝑡 ∈ ℝ) →
((abs ∘ 𝑓)‘𝑡) = (abs‘(𝑓‘𝑡))) |
| 114 | 112, 113 | sylan 488 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((abs ∘ 𝑓)‘𝑡) = (abs‘(𝑓‘𝑡))) |
| 115 | 32 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 𝑔:ℝ⟶ℝ) |
| 116 | | fvco3 6275 |
. . . . . . . . . . . . 13
⊢ ((𝑔:ℝ⟶ℝ ∧
𝑡 ∈ ℝ) →
((abs ∘ 𝑔)‘𝑡) = (abs‘(𝑔‘𝑡))) |
| 117 | 115, 116 | sylan 488 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((abs ∘ 𝑔)‘𝑡) = (abs‘(𝑔‘𝑡))) |
| 118 | 102, 110,
41, 41, 111, 114, 117 | offval 6904 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((abs ∘ 𝑓) ∘𝑓 + (abs ∘
𝑔)) = (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) |
| 119 | 30 | addid1d 10236 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ ((𝑓‘𝑡) + 0) = (𝑓‘𝑡)) |
| 120 | 119 | mpteq2dva 4744 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ dom ∫1
→ (𝑡 ∈ ℝ
↦ ((𝑓‘𝑡) + 0)) = (𝑡 ∈ ℝ ↦ (𝑓‘𝑡))) |
| 121 | 40 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ dom ∫1
→ ℝ ∈ V) |
| 122 | 17 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ 0 ∈ V) |
| 123 | 31 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ i ∈ ℂ) |
| 124 | 48 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ (ℝ × {i}) = (𝑡 ∈ ℝ ↦ i)) |
| 125 | | fconstmpt 5163 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (ℝ
× {0}) = (𝑡 ∈
ℝ ↦ 0) |
| 126 | 125 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑓 ∈ dom ∫1
→ (ℝ × {0}) = (𝑡 ∈ ℝ ↦ 0)) |
| 127 | 121, 123,
122, 124, 126 | offval2 6914 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 ∈ dom ∫1
→ ((ℝ × {i}) ∘𝑓 · (ℝ
× {0})) = (𝑡 ∈
ℝ ↦ (i · 0))) |
| 128 | | it0e0 11254 |
. . . . . . . . . . . . . . . . . . 19
⊢ (i
· 0) = 0 |
| 129 | 128 | mpteq2i 4741 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ ℝ ↦ (i
· 0)) = (𝑡 ∈
ℝ ↦ 0) |
| 130 | 127, 129 | syl6eq 2672 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 ∈ dom ∫1
→ ((ℝ × {i}) ∘𝑓 · (ℝ
× {0})) = (𝑡 ∈
ℝ ↦ 0)) |
| 131 | 121, 29, 122, 44, 130 | offval2 6914 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 ∈ dom ∫1
→ (𝑓
∘𝑓 + ((ℝ × {i})
∘𝑓 · (ℝ × {0}))) = (𝑡 ∈ ℝ ↦ ((𝑓‘𝑡) + 0))) |
| 132 | 120, 131,
44 | 3eqtr4d 2666 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 ∈ dom ∫1
→ (𝑓
∘𝑓 + ((ℝ × {i})
∘𝑓 · (ℝ × {0}))) = 𝑓) |
| 133 | 132 | coeq2d 5284 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ dom ∫1
→ (abs ∘ (𝑓
∘𝑓 + ((ℝ × {i})
∘𝑓 · (ℝ × {0})))) = (abs ∘
𝑓)) |
| 134 | | i1f0 23454 |
. . . . . . . . . . . . . . 15
⊢ (ℝ
× {0}) ∈ dom ∫1 |
| 135 | | ftc1anclem3 33487 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ (ℝ × {0}) ∈ dom ∫1) → (abs ∘
(𝑓
∘𝑓 + ((ℝ × {i})
∘𝑓 · (ℝ × {0})))) ∈ dom
∫1) |
| 136 | 134, 135 | mpan2 707 |
. . . . . . . . . . . . . 14
⊢ (𝑓 ∈ dom ∫1
→ (abs ∘ (𝑓
∘𝑓 + ((ℝ × {i})
∘𝑓 · (ℝ × {0})))) ∈ dom
∫1) |
| 137 | 133, 136 | eqeltrrd 2702 |
. . . . . . . . . . . . 13
⊢ (𝑓 ∈ dom ∫1
→ (abs ∘ 𝑓)
∈ dom ∫1) |
| 138 | 137 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ 𝑓) ∈ dom
∫1) |
| 139 | | coeq2 5280 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑔 → (abs ∘ 𝑓) = (abs ∘ 𝑔)) |
| 140 | 139 | eleq1d 2686 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → ((abs ∘ 𝑓) ∈ dom ∫1 ↔ (abs
∘ 𝑔) ∈ dom
∫1)) |
| 141 | 140, 137 | vtoclga 3272 |
. . . . . . . . . . . . 13
⊢ (𝑔 ∈ dom ∫1
→ (abs ∘ 𝑔)
∈ dom ∫1) |
| 142 | 141 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ 𝑔) ∈ dom
∫1) |
| 143 | 138, 142 | i1fadd 23462 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((abs ∘ 𝑓) ∘𝑓 + (abs ∘
𝑔)) ∈ dom
∫1) |
| 144 | 118, 143 | eqeltrrd 2702 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) ∈ dom
∫1) |
| 145 | 30 | abscld 14175 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝑓‘𝑡)) ∈ ℝ) |
| 146 | 30 | absge0d 14183 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ 0 ≤ (abs‘(𝑓‘𝑡))) |
| 147 | | elrege0 12278 |
. . . . . . . . . . . . . . . 16
⊢
((abs‘(𝑓‘𝑡)) ∈ (0[,)+∞) ↔
((abs‘(𝑓‘𝑡)) ∈ ℝ ∧ 0 ≤
(abs‘(𝑓‘𝑡)))) |
| 148 | 145, 146,
147 | sylanbrc 698 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝑓‘𝑡)) ∈ (0[,)+∞)) |
| 149 | 34 | abscld 14175 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝑔‘𝑡)) ∈ ℝ) |
| 150 | 34 | absge0d 14183 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ 0 ≤ (abs‘(𝑔‘𝑡))) |
| 151 | | elrege0 12278 |
. . . . . . . . . . . . . . . 16
⊢
((abs‘(𝑔‘𝑡)) ∈ (0[,)+∞) ↔
((abs‘(𝑔‘𝑡)) ∈ ℝ ∧ 0 ≤
(abs‘(𝑔‘𝑡)))) |
| 152 | 149, 150,
151 | sylanbrc 698 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝑔‘𝑡)) ∈ (0[,)+∞)) |
| 153 | | ge0addcl 12284 |
. . . . . . . . . . . . . . 15
⊢
(((abs‘(𝑓‘𝑡)) ∈ (0[,)+∞) ∧
(abs‘(𝑔‘𝑡)) ∈ (0[,)+∞)) →
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ (0[,)+∞)) |
| 154 | 148, 152,
153 | syl2an 494 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝑔 ∈ dom
∫1 ∧ 𝑡
∈ ℝ)) → ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ (0[,)+∞)) |
| 155 | 154 | anandirs 874 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ (0[,)+∞)) |
| 156 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) = (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) |
| 157 | 155, 156 | fmptd 6385 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶(0[,)+∞)) |
| 158 | | 0plef 23439 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶(0[,)+∞) ↔
((𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶ℝ ∧
0𝑝 ∘𝑟 ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))))) |
| 159 | 157, 158 | sylib 208 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶ℝ ∧
0𝑝 ∘𝑟 ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))))) |
| 160 | 159 | simprd 479 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → 0𝑝 ∘𝑟
≤ (𝑡 ∈ ℝ
↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) |
| 161 | | itg2itg1 23503 |
. . . . . . . . . . 11
⊢ (((𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) ∈ dom ∫1 ∧
0𝑝 ∘𝑟 ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) → (∫2‘(𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) = (∫1‘(𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))))) |
| 162 | | itg1cl 23452 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) ∈ dom ∫1 →
(∫1‘(𝑡
∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) ∈ ℝ) |
| 163 | 162 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) ∈ dom ∫1 ∧
0𝑝 ∘𝑟 ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) → (∫1‘(𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) ∈ ℝ) |
| 164 | 161, 163 | eqeltrd 2701 |
. . . . . . . . . 10
⊢ (((𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) ∈ dom ∫1 ∧
0𝑝 ∘𝑟 ≤ (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) → (∫2‘(𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) ∈ ℝ) |
| 165 | 144, 160,
164 | syl2anc 693 |
. . . . . . . . 9
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (∫2‘(𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) ∈ ℝ) |
| 166 | | icossicc 12260 |
. . . . . . . . . . 11
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
| 167 | | fss 6056 |
. . . . . . . . . . 11
⊢ (((𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶(0[,)+∞) ∧
(0[,)+∞) ⊆ (0[,]+∞)) → (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶(0[,]+∞)) |
| 168 | 157, 166,
167 | sylancl 694 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶(0[,]+∞)) |
| 169 | | 0re 10040 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ |
| 170 | | ifcl 4130 |
. . . . . . . . . . . . . 14
⊢
(((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℝ ∧ 0 ∈ ℝ)
→ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ ℝ) |
| 171 | 70, 169, 170 | sylancl 694 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ ℝ) |
| 172 | | readdcl 10019 |
. . . . . . . . . . . . . . 15
⊢
(((abs‘(𝑓‘𝑡)) ∈ ℝ ∧ (abs‘(𝑔‘𝑡)) ∈ ℝ) → ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ ℝ) |
| 173 | 145, 149,
172 | syl2an 494 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝑔 ∈ dom
∫1 ∧ 𝑡
∈ ℝ)) → ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ ℝ) |
| 174 | 173 | anandirs 874 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))) ∈ ℝ) |
| 175 | 70 | leidd 10594 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
| 176 | | breq1 4656 |
. . . . . . . . . . . . . . 15
⊢
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) → ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ↔ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
| 177 | | breq1 4656 |
. . . . . . . . . . . . . . 15
⊢ (0 =
if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) → (0 ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ↔ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
| 178 | 176, 177 | ifboth 4124 |
. . . . . . . . . . . . . 14
⊢
(((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∧ 0 ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
| 179 | 175, 71, 178 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
| 180 | | abstri 14070 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑓‘𝑡) ∈ ℂ ∧ (i · (𝑔‘𝑡)) ∈ ℂ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(i · (𝑔‘𝑡))))) |
| 181 | 30, 36, 180 | syl2an 494 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
∧ (𝑔 ∈ dom
∫1 ∧ 𝑡
∈ ℝ)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(i · (𝑔‘𝑡))))) |
| 182 | 181 | anandirs 874 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(i · (𝑔‘𝑡))))) |
| 183 | | absmul 14034 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((i
∈ ℂ ∧ (𝑔‘𝑡) ∈ ℂ) → (abs‘(i
· (𝑔‘𝑡))) = ((abs‘i) ·
(abs‘(𝑔‘𝑡)))) |
| 184 | 31, 34, 183 | sylancr 695 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(i · (𝑔‘𝑡))) = ((abs‘i) ·
(abs‘(𝑔‘𝑡)))) |
| 185 | | absi 14026 |
. . . . . . . . . . . . . . . . . . 19
⊢
(abs‘i) = 1 |
| 186 | 185 | oveq1i 6660 |
. . . . . . . . . . . . . . . . . 18
⊢
((abs‘i) · (abs‘(𝑔‘𝑡))) = (1 · (abs‘(𝑔‘𝑡))) |
| 187 | 184, 186 | syl6eq 2672 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(i · (𝑔‘𝑡))) = (1 · (abs‘(𝑔‘𝑡)))) |
| 188 | 149 | recnd 10068 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(𝑔‘𝑡)) ∈ ℂ) |
| 189 | 188 | mulid2d 10058 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (1 · (abs‘(𝑔‘𝑡))) = (abs‘(𝑔‘𝑡))) |
| 190 | 187, 189 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 ∈ dom ∫1
∧ 𝑡 ∈ ℝ)
→ (abs‘(i · (𝑔‘𝑡))) = (abs‘(𝑔‘𝑡))) |
| 191 | 190 | adantll 750 |
. . . . . . . . . . . . . . 15
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘(i · (𝑔‘𝑡))) = (abs‘(𝑔‘𝑡))) |
| 192 | 191 | oveq2d 6666 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → ((abs‘(𝑓‘𝑡)) + (abs‘(i · (𝑔‘𝑡)))) = ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) |
| 193 | 182, 192 | breqtrd 4679 |
. . . . . . . . . . . . 13
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) |
| 194 | 171, 70, 174, 179, 193 | letrd 10194 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) |
| 195 | 194 | ralrimiva 2966 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ∀𝑡 ∈ ℝ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) |
| 196 | | eqidd 2623 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
| 197 | | eqidd 2623 |
. . . . . . . . . . . 12
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) = (𝑡 ∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) |
| 198 | 41, 171, 174, 196, 197 | ofrfval2 6915 |
. . . . . . . . . . 11
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑟 ≤
(𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) |
| 199 | 195, 198 | mpbird 247 |
. . . . . . . . . 10
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑟 ≤
(𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) |
| 200 | | itg2le 23506 |
. . . . . . . . . 10
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)):ℝ⟶(0[,]+∞) ∧
(𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))):ℝ⟶(0[,]+∞) ∧
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑟 ≤
(𝑡 ∈ ℝ ↦
((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))))) |
| 201 | 91, 168, 199, 200 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))))) |
| 202 | | itg2lecl 23505 |
. . . . . . . . 9
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)):ℝ⟶(0[,]+∞) ∧
(∫2‘(𝑡
∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡))))) ∈ ℝ ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ ((abs‘(𝑓‘𝑡)) + (abs‘(𝑔‘𝑡)))))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
| 203 | 91, 165, 201, 202 | syl3anc 1326 |
. . . . . . . 8
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
| 204 | 203 | ad2antlr 763 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
| 205 | 91 | ad2antlr 763 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,]+∞)) |
| 206 | | breq1 4656 |
. . . . . . . . . . 11
⊢
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) → ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ↔ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
| 207 | | breq1 4656 |
. . . . . . . . . . 11
⊢ (0 =
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) → (0 ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ↔ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
| 208 | | elioore 12205 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ (𝑢(,)𝑤) → 𝑡 ∈ ℝ) |
| 209 | 208, 175 | sylan2 491 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ (𝑢(,)𝑤)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
| 210 | 209 | adantll 750 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
| 211 | 210 | adantlr 751 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
| 212 | 2 | rexrd 10089 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 213 | 3 | rexrd 10089 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 214 | 212, 213 | jca 554 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐴 ∈ ℝ* ∧ 𝐵 ∈
ℝ*)) |
| 215 | | df-icc 12182 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ [,] =
(𝑥 ∈
ℝ*, 𝑦
∈ ℝ* ↦ {𝑡 ∈ ℝ* ∣ (𝑥 ≤ 𝑡 ∧ 𝑡 ≤ 𝑦)}) |
| 216 | 215 | elixx3g 12188 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑢 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝑢 ∈
ℝ*) ∧ (𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝐵))) |
| 217 | 216 | simprbi 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑢 ∈ (𝐴[,]𝐵) → (𝐴 ≤ 𝑢 ∧ 𝑢 ≤ 𝐵)) |
| 218 | 217 | simpld 475 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ (𝐴[,]𝐵) → 𝐴 ≤ 𝑢) |
| 219 | 215 | elixx3g 12188 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ (𝐴[,]𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*
∧ 𝑤 ∈
ℝ*) ∧ (𝐴 ≤ 𝑤 ∧ 𝑤 ≤ 𝐵))) |
| 220 | 219 | simprbi 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ (𝐴[,]𝐵) → (𝐴 ≤ 𝑤 ∧ 𝑤 ≤ 𝐵)) |
| 221 | 220 | simprd 479 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ (𝐴[,]𝐵) → 𝑤 ≤ 𝐵) |
| 222 | 218, 221 | anim12i 590 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵)) → (𝐴 ≤ 𝑢 ∧ 𝑤 ≤ 𝐵)) |
| 223 | | ioossioo 12265 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) ∧ (𝐴 ≤ 𝑢 ∧ 𝑤 ≤ 𝐵)) → (𝑢(,)𝑤) ⊆ (𝐴(,)𝐵)) |
| 224 | 214, 222,
223 | syl2an 494 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑢(,)𝑤) ⊆ (𝐴(,)𝐵)) |
| 225 | 5 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝐴(,)𝐵) ⊆ 𝐷) |
| 226 | 224, 225 | sstrd 3613 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑢(,)𝑤) ⊆ 𝐷) |
| 227 | 226 | sselda 3603 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 𝑡 ∈ 𝐷) |
| 228 | | iftrue 4092 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
| 229 | 227, 228 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
| 230 | 229 | adantllr 755 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
| 231 | 211, 230 | breqtrrd 4681 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) |
| 232 | | breq2 4657 |
. . . . . . . . . . . . 13
⊢
((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) = if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) → (0 ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ↔ 0 ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
| 233 | | breq2 4657 |
. . . . . . . . . . . . 13
⊢ (0 =
if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) → (0 ≤ 0 ↔ 0 ≤
if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
| 234 | 6 | sselda 3603 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → 𝑡 ∈ ℝ) |
| 235 | 234 | adantlr 751 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → 𝑡 ∈ ℝ) |
| 236 | 71 | adantll 750 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ 0 ≤ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
| 237 | 235, 236 | syldan 487 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → 0 ≤
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
| 238 | | 0le0 11110 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
0 |
| 239 | 238 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ¬ 𝑡 ∈ 𝐷) → 0 ≤
0) |
| 240 | 232, 233,
237, 239 | ifbothda 4123 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ 0 ≤ if(𝑡 ∈
𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) |
| 241 | 240 | ad2antrr 762 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) |
| 242 | 206, 207,
231, 241 | ifbothda 4123 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) |
| 243 | 242 | ralrimivw 2967 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) |
| 244 | 40 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ℝ ∈
V) |
| 245 | 18 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ V) |
| 246 | 16, 17 | ifex 4156 |
. . . . . . . . . . . 12
⊢ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ V |
| 247 | 246 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ V) |
| 248 | | eqidd 2623 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
| 249 | | eqidd 2623 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
| 250 | 244, 245,
247, 248, 249 | ofrfval2 6915 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑟 ≤
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
| 251 | 250 | ad2antrr 762 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑟 ≤
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
| 252 | 243, 251 | mpbird 247 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑟 ≤
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
| 253 | | itg2le 23506 |
. . . . . . . 8
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)):ℝ⟶(0[,]+∞) ∧
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)):ℝ⟶(0[,]+∞) ∧
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑟 ≤
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)))) |
| 254 | 87, 205, 252, 253 | syl3anc 1326 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)))) |
| 255 | | itg2lecl 23505 |
. . . . . . 7
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)):ℝ⟶(0[,]+∞) ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ≤
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
| 256 | 87, 204, 254, 255 | syl3anc 1326 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
| 257 | 8 | ffvelrnda 6359 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) ∈ ℂ) |
| 258 | 257 | adantlr 751 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) ∈ ℂ) |
| 259 | 227, 258 | syldan 487 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (𝐹‘𝑡) ∈ ℂ) |
| 260 | 259 | adantllr 755 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (𝐹‘𝑡) ∈ ℂ) |
| 261 | 208, 39 | sylan2 491 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ (𝑢(,)𝑤)) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
| 262 | 261 | adantll 750 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
| 263 | 262 | adantlr 751 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
| 264 | 260, 263 | subcld 10392 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℂ) |
| 265 | 264 | abscld 14175 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℝ) |
| 266 | 264 | absge0d 14183 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
| 267 | | elrege0 12278 |
. . . . . . . . . 10
⊢
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ (0[,)+∞) ↔
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℝ ∧ 0 ≤
(abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
| 268 | 265, 266,
267 | sylanbrc 698 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ (0[,)+∞)) |
| 269 | 74 | a1i 11 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ∈
(0[,)+∞)) |
| 270 | 268, 269 | ifclda 4120 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
(0[,)+∞)) |
| 271 | 270 | adantr 481 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
(0[,)+∞)) |
| 272 | | eqid 2622 |
. . . . . . 7
⊢ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) |
| 273 | 271, 272 | fmptd 6385 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))),
0)):ℝ⟶(0[,)+∞)) |
| 274 | 265 | rexrd 10089 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈
ℝ*) |
| 275 | | elxrge0 12281 |
. . . . . . . . . . 11
⊢
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ (0[,]+∞) ↔
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℝ* ∧ 0 ≤
(abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
| 276 | 274, 266,
275 | sylanbrc 698 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ (0[,]+∞)) |
| 277 | 83 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ∈
(0[,]+∞)) |
| 278 | 276, 277 | ifclda 4120 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
(0[,]+∞)) |
| 279 | 278 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
(0[,]+∞)) |
| 280 | 279, 272 | fmptd 6385 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))),
0)):ℝ⟶(0[,]+∞)) |
| 281 | | recncf 22705 |
. . . . . . . . . . . . 13
⊢ ℜ
∈ (ℂ–cn→ℝ) |
| 282 | | prid1g 4295 |
. . . . . . . . . . . . 13
⊢ (ℜ
∈ (ℂ–cn→ℝ)
→ ℜ ∈ {ℜ, ℑ}) |
| 283 | 281, 282 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ℜ
∈ {ℜ, ℑ} |
| 284 | | ftc1anclem2 33486 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐷⟶ℂ ∧ 𝐹 ∈ 𝐿1 ∧ ℜ
∈ {ℜ, ℑ}) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) ∈ ℝ) |
| 285 | 283, 284 | mp3an3 1413 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐷⟶ℂ ∧ 𝐹 ∈ 𝐿1) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0))) ∈ ℝ) |
| 286 | 8, 7, 285 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0))) ∈ ℝ) |
| 287 | | imcncf 22706 |
. . . . . . . . . . . . 13
⊢ ℑ
∈ (ℂ–cn→ℝ) |
| 288 | | prid2g 4296 |
. . . . . . . . . . . . 13
⊢ (ℑ
∈ (ℂ–cn→ℝ)
→ ℑ ∈ {ℜ, ℑ}) |
| 289 | 287, 288 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ℑ
∈ {ℜ, ℑ} |
| 290 | | ftc1anclem2 33486 |
. . . . . . . . . . . 12
⊢ ((𝐹:𝐷⟶ℂ ∧ 𝐹 ∈ 𝐿1 ∧ ℑ
∈ {ℜ, ℑ}) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈ ℝ) |
| 291 | 289, 290 | mp3an3 1413 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐷⟶ℂ ∧ 𝐹 ∈ 𝐿1) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈ ℝ) |
| 292 | 8, 7, 291 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ 𝐷,
(abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈ ℝ) |
| 293 | 286, 292 | readdcld 10069 |
. . . . . . . . 9
⊢ (𝜑 →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) ∈ ℝ) |
| 294 | 293 | ad2antrr 762 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) ∈ ℝ) |
| 295 | 204, 294 | readdcld 10069 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) ∈ ℝ) |
| 296 | | ge0addcl 12284 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ (0[,)+∞) ∧
𝑦 ∈ (0[,)+∞))
→ (𝑥 + 𝑦) ∈
(0[,)+∞)) |
| 297 | 296 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑥 ∈
(0[,)+∞) ∧ 𝑦
∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,)+∞)) |
| 298 | | ifcl 4130 |
. . . . . . . . . . . . . . 15
⊢
(((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ (0[,)+∞) ∧ 0 ∈
(0[,)+∞)) → if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,)+∞)) |
| 299 | 73, 74, 298 | sylancl 694 |
. . . . . . . . . . . . . 14
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → if(𝑡
∈ 𝐷,
(abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈
(0[,)+∞)) |
| 300 | 299, 90 | fmptd 6385 |
. . . . . . . . . . . . 13
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,)+∞)) |
| 301 | 300 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))),
0)):ℝ⟶(0[,)+∞)) |
| 302 | 296 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) →
(𝑥 + 𝑦) ∈ (0[,)+∞)) |
| 303 | 257 | recld 13934 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (ℜ‘(𝐹‘𝑡)) ∈ ℝ) |
| 304 | 303 | recnd 10068 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (ℜ‘(𝐹‘𝑡)) ∈ ℂ) |
| 305 | 304 | abscld 14175 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(ℜ‘(𝐹‘𝑡))) ∈ ℝ) |
| 306 | 304 | absge0d 14183 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → 0 ≤
(abs‘(ℜ‘(𝐹‘𝑡)))) |
| 307 | | elrege0 12278 |
. . . . . . . . . . . . . . . . . 18
⊢
((abs‘(ℜ‘(𝐹‘𝑡))) ∈ (0[,)+∞) ↔
((abs‘(ℜ‘(𝐹‘𝑡))) ∈ ℝ ∧ 0 ≤
(abs‘(ℜ‘(𝐹‘𝑡))))) |
| 308 | 305, 306,
307 | sylanbrc 698 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(ℜ‘(𝐹‘𝑡))) ∈ (0[,)+∞)) |
| 309 | 74 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ ¬ 𝑡 ∈ 𝐷) → 0 ∈
(0[,)+∞)) |
| 310 | 308, 309 | ifclda 4120 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) ∈
(0[,)+∞)) |
| 311 | 310 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) ∈
(0[,)+∞)) |
| 312 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) |
| 313 | 311, 312 | fmptd 6385 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))),
0)):ℝ⟶(0[,)+∞)) |
| 314 | 257 | imcld 13935 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (ℑ‘(𝐹‘𝑡)) ∈ ℝ) |
| 315 | 314 | recnd 10068 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (ℑ‘(𝐹‘𝑡)) ∈ ℂ) |
| 316 | 315 | abscld 14175 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(ℑ‘(𝐹‘𝑡))) ∈ ℝ) |
| 317 | 315 | absge0d 14183 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → 0 ≤
(abs‘(ℑ‘(𝐹‘𝑡)))) |
| 318 | | elrege0 12278 |
. . . . . . . . . . . . . . . . . 18
⊢
((abs‘(ℑ‘(𝐹‘𝑡))) ∈ (0[,)+∞) ↔
((abs‘(ℑ‘(𝐹‘𝑡))) ∈ ℝ ∧ 0 ≤
(abs‘(ℑ‘(𝐹‘𝑡))))) |
| 319 | 316, 317,
318 | sylanbrc 698 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(ℑ‘(𝐹‘𝑡))) ∈ (0[,)+∞)) |
| 320 | 319, 309 | ifclda 4120 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0) ∈
(0[,)+∞)) |
| 321 | 320 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0) ∈
(0[,)+∞)) |
| 322 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)) |
| 323 | 321, 322 | fmptd 6385 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))),
0)):ℝ⟶(0[,)+∞)) |
| 324 | 302, 313,
323, 244, 244, 111 | off 6912 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))),
0))):ℝ⟶(0[,)+∞)) |
| 325 | 324 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((𝑡 ∈ ℝ
↦ if(𝑡 ∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))),
0))):ℝ⟶(0[,)+∞)) |
| 326 | 40 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ℝ ∈ V) |
| 327 | 297, 301,
325, 326, 326, 111 | off 6912 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((𝑡 ∈ ℝ
↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑓 +
((𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))),
0)))):ℝ⟶(0[,)+∞)) |
| 328 | | fss 6056 |
. . . . . . . . . . 11
⊢ ((((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑓 +
((𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))):ℝ⟶(0[,)+∞)
∧ (0[,)+∞) ⊆ (0[,]+∞)) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑓 +
((𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))),
0)))):ℝ⟶(0[,]+∞)) |
| 329 | 327, 166,
328 | sylancl 694 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((𝑡 ∈ ℝ
↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑓 +
((𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))),
0)))):ℝ⟶(0[,]+∞)) |
| 330 | 329 | adantr 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑓 +
((𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))),
0)))):ℝ⟶(0[,]+∞)) |
| 331 | | 0xr 10086 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℝ* |
| 332 | 331 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ∈
ℝ*) |
| 333 | 274, 332 | ifclda 4120 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
ℝ*) |
| 334 | 257 | adantlr 751 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) ∈ ℂ) |
| 335 | 39 | adantll 750 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ ℝ)
→ ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
| 336 | 235, 335 | syldan 487 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → ((𝑓‘𝑡) + (i · (𝑔‘𝑡))) ∈ ℂ) |
| 337 | 334, 336 | subcld 10392 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → ((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℂ) |
| 338 | 337 | abscld 14175 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℝ) |
| 339 | 338 | rexrd 10089 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈
ℝ*) |
| 340 | 331 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ¬ 𝑡 ∈ 𝐷) → 0 ∈
ℝ*) |
| 341 | 339, 340 | ifclda 4120 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
ℝ*) |
| 342 | 341 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈
ℝ*) |
| 343 | 336 | abscld 14175 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℝ) |
| 344 | | 0red 10041 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ ¬ 𝑡 ∈ 𝐷) → 0 ∈
ℝ) |
| 345 | 343, 344 | ifclda 4120 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ ℝ) |
| 346 | | 0red 10041 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ¬ 𝑡 ∈ 𝐷) → 0 ∈ ℝ) |
| 347 | 305, 346 | ifclda 4120 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) ∈ ℝ) |
| 348 | 316, 346 | ifclda 4120 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0) ∈ ℝ) |
| 349 | 347, 348 | readdcld 10069 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)) ∈ ℝ) |
| 350 | 349 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (if(𝑡 ∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)) ∈ ℝ) |
| 351 | 345, 350 | readdcld 10069 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈ ℝ) |
| 352 | 351 | rexrd 10089 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈
ℝ*) |
| 353 | 352 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈
ℝ*) |
| 354 | | breq1 4656 |
. . . . . . . . . . . . 13
⊢
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) = if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) → ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ↔ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) |
| 355 | | breq1 4656 |
. . . . . . . . . . . . 13
⊢ (0 =
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) → (0 ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ↔ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) |
| 356 | 227 | adantllr 755 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → 𝑡 ∈ 𝐷) |
| 357 | 338 | leidd 10594 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
| 358 | 357 | adantlr 751 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
| 359 | | iftrue 4092 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) = (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
| 360 | 359 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) = (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
| 361 | 358, 360 | breqtrrd 4681 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) |
| 362 | 356, 361 | syldan 487 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) |
| 363 | | breq2 4657 |
. . . . . . . . . . . . . . 15
⊢
((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) = if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) → (0 ≤ (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↔ 0 ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) |
| 364 | | breq2 4657 |
. . . . . . . . . . . . . . 15
⊢ (0 =
if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) → (0 ≤ 0 ↔ 0 ≤
if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) |
| 365 | 337 | absge0d 14183 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → 0 ≤
(abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
| 366 | 363, 364,
365, 239 | ifbothda 4123 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ 0 ≤ if(𝑡 ∈
𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) |
| 367 | 366 | ad2antrr 762 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → 0 ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) |
| 368 | 354, 355,
362, 367 | ifbothda 4123 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) |
| 369 | 257 | negcld 10379 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → -(𝐹‘𝑡) ∈ ℂ) |
| 370 | 369 | adantlr 751 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → -(𝐹‘𝑡) ∈ ℂ) |
| 371 | 336, 370 | addcld 10059 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (((𝑓‘𝑡) + (i · (𝑔‘𝑡))) + -(𝐹‘𝑡)) ∈ ℂ) |
| 372 | 371 | abscld 14175 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘(((𝑓‘𝑡) + (i · (𝑔‘𝑡))) + -(𝐹‘𝑡))) ∈ ℝ) |
| 373 | 369 | abscld 14175 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘-(𝐹‘𝑡)) ∈ ℝ) |
| 374 | 373 | adantlr 751 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘-(𝐹‘𝑡)) ∈ ℝ) |
| 375 | 343, 374 | readdcld 10069 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘-(𝐹‘𝑡))) ∈ ℝ) |
| 376 | 305, 316 | readdcld 10069 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))) ∈ ℝ) |
| 377 | 376 | adantlr 751 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) →
((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))) ∈ ℝ) |
| 378 | 343, 377 | readdcld 10069 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))) ∈ ℝ) |
| 379 | 336, 370 | abstrid 14195 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘(((𝑓‘𝑡) + (i · (𝑔‘𝑡))) + -(𝐹‘𝑡))) ≤ ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘-(𝐹‘𝑡)))) |
| 380 | | mulcl 10020 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((i
∈ ℂ ∧ (ℑ‘(𝐹‘𝑡)) ∈ ℂ) → (i ·
(ℑ‘(𝐹‘𝑡))) ∈ ℂ) |
| 381 | 31, 315, 380 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (i · (ℑ‘(𝐹‘𝑡))) ∈ ℂ) |
| 382 | 304, 381 | abstrid 14195 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘((ℜ‘(𝐹‘𝑡)) + (i · (ℑ‘(𝐹‘𝑡))))) ≤ ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(i ·
(ℑ‘(𝐹‘𝑡)))))) |
| 383 | 257 | absnegd 14188 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘-(𝐹‘𝑡)) = (abs‘(𝐹‘𝑡))) |
| 384 | 257 | replimd 13937 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (𝐹‘𝑡) = ((ℜ‘(𝐹‘𝑡)) + (i · (ℑ‘(𝐹‘𝑡))))) |
| 385 | 384 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(𝐹‘𝑡)) = (abs‘((ℜ‘(𝐹‘𝑡)) + (i · (ℑ‘(𝐹‘𝑡)))))) |
| 386 | 383, 385 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘-(𝐹‘𝑡)) = (abs‘((ℜ‘(𝐹‘𝑡)) + (i · (ℑ‘(𝐹‘𝑡)))))) |
| 387 | | absmul 14034 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((i
∈ ℂ ∧ (ℑ‘(𝐹‘𝑡)) ∈ ℂ) → (abs‘(i
· (ℑ‘(𝐹‘𝑡)))) = ((abs‘i) ·
(abs‘(ℑ‘(𝐹‘𝑡))))) |
| 388 | 31, 315, 387 | sylancr 695 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(i ·
(ℑ‘(𝐹‘𝑡)))) = ((abs‘i) ·
(abs‘(ℑ‘(𝐹‘𝑡))))) |
| 389 | 185 | oveq1i 6660 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
((abs‘i) · (abs‘(ℑ‘(𝐹‘𝑡)))) = (1 ·
(abs‘(ℑ‘(𝐹‘𝑡)))) |
| 390 | 388, 389 | syl6eq 2672 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(i ·
(ℑ‘(𝐹‘𝑡)))) = (1 ·
(abs‘(ℑ‘(𝐹‘𝑡))))) |
| 391 | 316 | recnd 10068 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(ℑ‘(𝐹‘𝑡))) ∈ ℂ) |
| 392 | 391 | mulid2d 10058 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (1 ·
(abs‘(ℑ‘(𝐹‘𝑡)))) = (abs‘(ℑ‘(𝐹‘𝑡)))) |
| 393 | 390, 392 | eqtr2d 2657 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘(ℑ‘(𝐹‘𝑡))) = (abs‘(i ·
(ℑ‘(𝐹‘𝑡))))) |
| 394 | 393 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))) = ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(i ·
(ℑ‘(𝐹‘𝑡)))))) |
| 395 | 382, 386,
394 | 3brtr4d 4685 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → (abs‘-(𝐹‘𝑡)) ≤ ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))) |
| 396 | 395 | adantlr 751 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘-(𝐹‘𝑡)) ≤ ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))) |
| 397 | 374, 377,
343, 396 | leadd2dd 10642 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘-(𝐹‘𝑡))) ≤ ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))))) |
| 398 | 372, 375,
378, 379, 397 | letrd 10194 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘(((𝑓‘𝑡) + (i · (𝑔‘𝑡))) + -(𝐹‘𝑡))) ≤ ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))))) |
| 399 | 334, 336 | abssubd 14192 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) = (abs‘(((𝑓‘𝑡) + (i · (𝑔‘𝑡))) − (𝐹‘𝑡)))) |
| 400 | 359 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) = (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
| 401 | 336, 334 | negsubd 10398 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (((𝑓‘𝑡) + (i · (𝑔‘𝑡))) + -(𝐹‘𝑡)) = (((𝑓‘𝑡) + (i · (𝑔‘𝑡))) − (𝐹‘𝑡))) |
| 402 | 401 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → (abs‘(((𝑓‘𝑡) + (i · (𝑔‘𝑡))) + -(𝐹‘𝑡))) = (abs‘(((𝑓‘𝑡) + (i · (𝑔‘𝑡))) − (𝐹‘𝑡)))) |
| 403 | 399, 400,
402 | 3eqtr4d 2666 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) = (abs‘(((𝑓‘𝑡) + (i · (𝑔‘𝑡))) + -(𝐹‘𝑡)))) |
| 404 | | iftrue 4092 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0) = ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))))) |
| 405 | 404 | adantl 482 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0) = ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))))) |
| 406 | 398, 403,
405 | 3brtr4d 4685 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0)) |
| 407 | 406 | ex 450 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0))) |
| 408 | 238 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑡 ∈ 𝐷 → 0 ≤ 0) |
| 409 | | iffalse 4095 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) = 0) |
| 410 | | iffalse 4095 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0) = 0) |
| 411 | 408, 409,
410 | 3brtr4d 4685 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0)) |
| 412 | 407, 411 | pm2.61d1 171 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0)) |
| 413 | | iftrue 4092 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) = (abs‘(ℜ‘(𝐹‘𝑡)))) |
| 414 | | iftrue 4092 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0) = (abs‘(ℑ‘(𝐹‘𝑡)))) |
| 415 | 413, 414 | oveq12d 6668 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∈ 𝐷 → (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)) = ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))) |
| 416 | 228, 415 | oveq12d 6668 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ 𝐷 → (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) = ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡)))))) |
| 417 | 416, 404 | eqtr4d 2659 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ 𝐷 → (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) = if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0)) |
| 418 | | 00id 10211 |
. . . . . . . . . . . . . . . . . 18
⊢ (0 + 0) =
0 |
| 419 | 418 | oveq2i 6661 |
. . . . . . . . . . . . . . . . 17
⊢ (0 + (0 +
0)) = (0 + 0) |
| 420 | 419, 418 | eqtri 2644 |
. . . . . . . . . . . . . . . 16
⊢ (0 + (0 +
0)) = 0 |
| 421 | | iffalse 4095 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = 0) |
| 422 | | iffalse 4095 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) = 0) |
| 423 | | iffalse 4095 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬
𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0) = 0) |
| 424 | 422, 423 | oveq12d 6668 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
𝑡 ∈ 𝐷 → (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)) = (0 + 0)) |
| 425 | 421, 424 | oveq12d 6668 |
. . . . . . . . . . . . . . . 16
⊢ (¬
𝑡 ∈ 𝐷 → (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) = (0 + (0 + 0))) |
| 426 | 420, 425,
410 | 3eqtr4a 2682 |
. . . . . . . . . . . . . . 15
⊢ (¬
𝑡 ∈ 𝐷 → (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) = if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0)) |
| 427 | 417, 426 | pm2.61i 176 |
. . . . . . . . . . . . . 14
⊢ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) = if(𝑡 ∈ 𝐷, ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + ((abs‘(ℜ‘(𝐹‘𝑡))) + (abs‘(ℑ‘(𝐹‘𝑡))))), 0) |
| 428 | 412, 427 | syl6breqr 4695 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) |
| 429 | 428 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ 𝐷, (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) |
| 430 | 333, 342,
353, 368, 429 | xrletrd 11993 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) |
| 431 | 430 | ralrimivw 2967 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) |
| 432 | | fvex 6201 |
. . . . . . . . . . . . . 14
⊢
(abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ V |
| 433 | 432, 17 | ifex 4156 |
. . . . . . . . . . . . 13
⊢ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈ V |
| 434 | 433 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ∈ V) |
| 435 | | ovexd 6680 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) ∈ V) |
| 436 | | eqidd 2623 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) |
| 437 | | ovexd 6680 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)) ∈ V) |
| 438 | 347 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) ∈ ℝ) |
| 439 | 348 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0) ∈ ℝ) |
| 440 | | eqidd 2623 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) |
| 441 | | eqidd 2623 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) |
| 442 | 244, 438,
439, 440, 441 | offval2 6914 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))) = (𝑡 ∈ ℝ ↦ (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) |
| 443 | 244, 247,
437, 249, 442 | offval2 6914 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑓 +
((𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) = (𝑡 ∈ ℝ ↦ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) |
| 444 | 244, 434,
435, 436, 443 | ofrfval2 6915 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) ∘𝑟 ≤
((𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑓 +
((𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) |
| 445 | 444 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) ∘𝑟 ≤
((𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑓 +
((𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) ↔ ∀𝑡 ∈ ℝ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) ≤ (if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + (if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) + if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) |
| 446 | 431, 445 | mpbird 247 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) ∘𝑟 ≤
((𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑓 +
((𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) |
| 447 | | itg2le 23506 |
. . . . . . . . 9
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)):ℝ⟶(0[,]+∞)
∧ ((𝑡 ∈ ℝ
↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑓 +
((𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))):ℝ⟶(0[,]+∞)
∧ (𝑡 ∈ ℝ
↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) ∘𝑟 ≤
((𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑓 +
((𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤
(∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑓 +
((𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) |
| 448 | 280, 330,
446, 447 | syl3anc 1326 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤
(∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑓 +
((𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) |
| 449 | 6 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ 𝐷 ⊆
ℝ) |
| 450 | 246 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) ∈ V) |
| 451 | | eldifn 3733 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ (ℝ ∖ 𝐷) → ¬ 𝑡 ∈ 𝐷) |
| 452 | 451 | iffalsed 4097 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ (ℝ ∖ 𝐷) → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = 0) |
| 453 | 452 | adantl 482 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ 𝑡 ∈ (ℝ
∖ 𝐷)) → if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = 0) |
| 454 | | ovexd 6680 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ ℝ) → (i · (𝑔‘𝑡)) ∈ V) |
| 455 | 41, 42, 454, 45, 52 | offval2 6914 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (𝑓 ∘𝑓 + ((ℝ
× {i}) ∘𝑓 · 𝑔)) = (𝑡 ∈ ℝ ↦ ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
| 456 | 39, 455, 56, 57 | fmptco 6396 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ (𝑓 ∘𝑓 + ((ℝ
× {i}) ∘𝑓 · 𝑔))) = (𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
| 457 | 456 | reseq1d 5395 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → ((abs ∘ (𝑓 ∘𝑓 + ((ℝ
× {i}) ∘𝑓 · 𝑔))) ↾ 𝐷) = ((𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↾ 𝐷)) |
| 458 | 6 | resmptd 5452 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ↾ 𝐷) = (𝑡 ∈ 𝐷 ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
| 459 | 457, 458 | sylan9eqr 2678 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((abs ∘ (𝑓
∘𝑓 + ((ℝ × {i})
∘𝑓 · 𝑔))) ↾ 𝐷) = (𝑡 ∈ 𝐷 ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
| 460 | 228 | mpteq2ia 4740 |
. . . . . . . . . . . . . 14
⊢ (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) = (𝑡 ∈ 𝐷 ↦ (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) |
| 461 | 459, 460 | syl6eqr 2674 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((abs ∘ (𝑓
∘𝑓 + ((ℝ × {i})
∘𝑓 · 𝑔))) ↾ 𝐷) = (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) |
| 462 | | i1fmbf 23442 |
. . . . . . . . . . . . . . 15
⊢ ((abs
∘ (𝑓
∘𝑓 + ((ℝ × {i})
∘𝑓 · 𝑔))) ∈ dom ∫1 → (abs
∘ (𝑓
∘𝑓 + ((ℝ × {i})
∘𝑓 · 𝑔))) ∈ MblFn) |
| 463 | 59, 462 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) → (abs ∘ (𝑓 ∘𝑓 + ((ℝ
× {i}) ∘𝑓 · 𝑔))) ∈ MblFn) |
| 464 | | fdm 6051 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:𝐷⟶ℂ → dom 𝐹 = 𝐷) |
| 465 | 8, 464 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → dom 𝐹 = 𝐷) |
| 466 | | iblmbf 23534 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ 𝐿1
→ 𝐹 ∈
MblFn) |
| 467 | | mbfdm 23395 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom
vol) |
| 468 | 7, 466, 467 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → dom 𝐹 ∈ dom vol) |
| 469 | 465, 468 | eqeltrrd 2702 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐷 ∈ dom vol) |
| 470 | | mbfres 23411 |
. . . . . . . . . . . . . 14
⊢ (((abs
∘ (𝑓
∘𝑓 + ((ℝ × {i})
∘𝑓 · 𝑔))) ∈ MblFn ∧ 𝐷 ∈ dom vol) → ((abs ∘ (𝑓 ∘𝑓 +
((ℝ × {i}) ∘𝑓 · 𝑔))) ↾ 𝐷) ∈ MblFn) |
| 471 | 463, 469,
470 | syl2anr 495 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((abs ∘ (𝑓
∘𝑓 + ((ℝ × {i})
∘𝑓 · 𝑔))) ↾ 𝐷) ∈ MblFn) |
| 472 | 461, 471 | eqeltrrd 2702 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ MblFn) |
| 473 | 449, 15, 450, 453, 472 | mbfss 23413 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (𝑡 ∈ ℝ
↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∈ MblFn) |
| 474 | 203 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) ∈ ℝ) |
| 475 | | 0cnd 10033 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ ¬ 𝑡 ∈ 𝐷) → 0 ∈ ℂ) |
| 476 | 304, 475 | ifclda 4120 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) ∈ ℂ) |
| 477 | 476 | adantr 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) ∈ ℂ) |
| 478 | | eqidd 2623 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0))) |
| 479 | 54 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 →
abs:ℂ⟶ℝ) |
| 480 | 479 | feqmptd 6249 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → abs = (𝑥 ∈ ℂ ↦ (abs‘𝑥))) |
| 481 | | fveq2 6191 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) → (abs‘𝑥) = (abs‘if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0))) |
| 482 | | fvif 6204 |
. . . . . . . . . . . . . . . . . 18
⊢
(abs‘if(𝑡
∈ 𝐷,
(ℜ‘(𝐹‘𝑡)), 0)) = if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), (abs‘0)) |
| 483 | | abs0 14025 |
. . . . . . . . . . . . . . . . . . 19
⊢
(abs‘0) = 0 |
| 484 | | ifeq2 4091 |
. . . . . . . . . . . . . . . . . . 19
⊢
((abs‘0) = 0 → if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), (abs‘0)) = if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) |
| 485 | 483, 484 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), (abs‘0)) = if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) |
| 486 | 482, 485 | eqtri 2644 |
. . . . . . . . . . . . . . . . 17
⊢
(abs‘if(𝑡
∈ 𝐷,
(ℜ‘(𝐹‘𝑡)), 0)) = if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0) |
| 487 | 481, 486 | syl6eq 2672 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) → (abs‘𝑥) = if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) |
| 488 | 477, 478,
480, 487 | fmptco 6396 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (abs ∘ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0))) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) |
| 489 | 303, 346 | ifclda 4120 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) ∈ ℝ) |
| 490 | 489 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ ℝ) → if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) ∈ ℝ) |
| 491 | | eqid 2622 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0)) |
| 492 | 490, 491 | fmptd 6385 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)),
0)):ℝ⟶ℝ) |
| 493 | 14 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ℝ ∈ dom
vol) |
| 494 | 489 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ 𝐷) → if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) ∈ ℝ) |
| 495 | 451 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑡 ∈ (ℝ ∖ 𝐷)) → ¬ 𝑡 ∈ 𝐷) |
| 496 | 495 | iffalsed 4097 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑡 ∈ (ℝ ∖ 𝐷)) → if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) = 0) |
| 497 | | iftrue 4092 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 ∈ 𝐷 → if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0) = (ℜ‘(𝐹‘𝑡))) |
| 498 | 497 | mpteq2ia 4740 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0)) = (𝑡 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑡))) |
| 499 | 8 | feqmptd 6249 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐹 = (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡))) |
| 500 | 7, 466 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐹 ∈ MblFn) |
| 501 | 499, 500 | eqeltrrd 2702 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → (𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡)) ∈ MblFn) |
| 502 | 257 | ismbfcn2 23406 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑡 ∈ 𝐷 ↦ (𝐹‘𝑡)) ∈ MblFn ↔ ((𝑡 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑡))) ∈ MblFn ∧ (𝑡 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑡))) ∈ MblFn))) |
| 503 | 501, 502 | mpbid 222 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ((𝑡 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑡))) ∈ MblFn ∧ (𝑡 ∈ 𝐷 ↦ (ℑ‘(𝐹‘𝑡))) ∈ MblFn)) |
| 504 | 503 | simpld 475 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (𝑡 ∈ 𝐷 ↦ (ℜ‘(𝐹‘𝑡))) ∈ MblFn) |
| 505 | 498, 504 | syl5eqel 2705 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑡 ∈ 𝐷 ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0)) ∈ MblFn) |
| 506 | 6, 493, 494, 496, 505 | mbfss 23413 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0)) ∈ MblFn) |
| 507 | | ftc1anclem1 33485 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0)):ℝ⟶ℝ ∧ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0)) ∈ MblFn) → (abs ∘
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0))) ∈ MblFn) |
| 508 | 492, 506,
507 | syl2anc 693 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (abs ∘ (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (ℜ‘(𝐹‘𝑡)), 0))) ∈ MblFn) |
| 509 | 488, 508 | eqeltrrd 2702 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∈ MblFn) |
| 510 | 509, 313,
286, 323, 292 | itg2addnc 33464 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
(∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) = ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) |
| 511 | 510, 293 | eqeltrd 2701 |
. . . . . . . . . . . 12
⊢ (𝜑 →
(∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) ∈ ℝ) |
| 512 | 511 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) ∈ ℝ) |
| 513 | 473, 301,
474, 325, 512 | itg2addnc 33464 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑓 +
((𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) =
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) |
| 514 | 510 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))) = ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) |
| 515 | 514 | oveq2d 6666 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) =
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) |
| 516 | 513, 515 | eqtrd 2656 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
→ (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑓 +
((𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) =
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) |
| 517 | 516 | adantr 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑓 +
((𝑡 ∈ ℝ ↦
if(𝑡 ∈ 𝐷,
(abs‘(ℜ‘(𝐹‘𝑡))), 0)) ∘𝑓 + (𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) =
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) |
| 518 | 448, 517 | breqtrd 4679 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) |
| 519 | | itg2lecl 23505 |
. . . . . . 7
⊢ (((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)):ℝ⟶(0[,]+∞)
∧ ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0))))) ∈ ℝ ∧
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ≤
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℜ‘(𝐹‘𝑡))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ 𝐷, (abs‘(ℑ‘(𝐹‘𝑡))), 0)))))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ∈ ℝ) |
| 520 | 280, 295,
518, 519 | syl3anc 1326 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) ∈ ℝ) |
| 521 | 69, 79, 256, 273, 520 | itg2addnc 33464 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑓 +
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) =
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))))) |
| 522 | 244, 245,
434, 248, 436 | offval2 6914 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑓 +
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) = (𝑡 ∈ ℝ ↦ (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) |
| 523 | | eqeq2 2633 |
. . . . . . . . . . 11
⊢
(((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) = if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0) → ((if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) ↔ (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0))) |
| 524 | | eqeq2 2633 |
. . . . . . . . . . 11
⊢ (0 =
if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0) → ((if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = 0 ↔ (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0))) |
| 525 | | iftrue 4092 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) = (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
| 526 | 23, 525 | oveq12d 6668 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ (𝑢(,)𝑤) → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
| 527 | 526 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) |
| 528 | | iffalse 4095 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) = 0) |
| 529 | | iffalse 4095 |
. . . . . . . . . . . . . 14
⊢ (¬
𝑡 ∈ (𝑢(,)𝑤) → if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0) = 0) |
| 530 | 528, 529 | oveq12d 6668 |
. . . . . . . . . . . . 13
⊢ (¬
𝑡 ∈ (𝑢(,)𝑤) → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = (0 + 0)) |
| 531 | 530, 418 | syl6eq 2672 |
. . . . . . . . . . . 12
⊢ (¬
𝑡 ∈ (𝑢(,)𝑤) → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = 0) |
| 532 | 531 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ¬ 𝑡 ∈ (𝑢(,)𝑤)) → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = 0) |
| 533 | 523, 524,
527, 532 | ifbothda 4123 |
. . . . . . . . . 10
⊢ (𝜑 → (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) = if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0)) |
| 534 | 533 | mpteq2dv 4745 |
. . . . . . . . 9
⊢ (𝜑 → (𝑡 ∈ ℝ ↦ (if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0) + if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0))) |
| 535 | 522, 534 | eqtrd 2656 |
. . . . . . . 8
⊢ (𝜑 → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑓 +
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0))) |
| 536 | 535 | ad2antrr 762 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑓 +
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0))) |
| 537 | | simplr 792 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom
∫1)) |
| 538 | 261 | abscld 14175 |
. . . . . . . . . . . 12
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ (𝑢(,)𝑤)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℝ) |
| 539 | 538 | recnd 10068 |
. . . . . . . . . . 11
⊢ (((𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1) ∧ 𝑡
∈ (𝑢(,)𝑤)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℂ) |
| 540 | 537, 539 | sylan 488 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) ∈ ℂ) |
| 541 | 265 | recnd 10068 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) ∈ ℂ) |
| 542 | 540, 541 | addcomd 10238 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) ∧ 𝑡 ∈ (𝑢(,)𝑤)) → ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) = ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))) |
| 543 | 542 | ifeq1da 4116 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0) = if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)) |
| 544 | 543 | mpteq2dv 4745 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))) + (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡)))))), 0)) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) |
| 545 | 536, 544 | eqtrd 2656 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑓 +
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) = (𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) |
| 546 | 545 | fveq2d 6195 |
. . . . 5
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → (∫2‘((𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0)) ∘𝑓 +
(𝑡 ∈ ℝ ↦
if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) =
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) |
| 547 | 521, 546 | eqtr3d 2658 |
. . . 4
⊢ (((𝜑 ∧ (𝑓 ∈ dom ∫1 ∧ 𝑔 ∈ dom ∫1))
∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵))) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) =
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) |
| 548 | 10, 11, 547 | syl2an 494 |
. . 3
⊢
((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) → ((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) =
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) |
| 549 | 548 | adantr 481 |
. 2
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
((∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡)))), 0))) + (∫2‘(𝑡 ∈ ℝ ↦ if(𝑡 ∈ (𝑢(,)𝑤), (abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) =
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0)))) |
| 550 | | rpcn 11841 |
. . . 4
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℂ) |
| 551 | 550 | 2halvesd 11278 |
. . 3
⊢ (𝑦 ∈ ℝ+
→ ((𝑦 / 2) + (𝑦 / 2)) = 𝑦) |
| 552 | 551 | ad3antlr 767 |
. 2
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
((𝑦 / 2) + (𝑦 / 2)) = 𝑦) |
| 553 | 9, 549, 552 | 3brtr3d 4684 |
1
⊢
(((((((𝜑 ∧ (𝑓 ∈ dom ∫1
∧ 𝑔 ∈ dom
∫1)) ∧ (∫2‘(𝑡 ∈ ℝ ↦ (abs‘(if(𝑡 ∈ 𝐷, (𝐹‘𝑡), 0) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))))) < (𝑦 / 2)) ∧ ∃𝑟 ∈ (ran 𝑓 ∪ ran 𝑔)𝑟 ≠ 0) ∧ 𝑦 ∈ ℝ+) ∧ (𝑢 ∈ (𝐴[,]𝐵) ∧ 𝑤 ∈ (𝐴[,]𝐵) ∧ 𝑢 ≤ 𝑤)) ∧ (abs‘(𝑤 − 𝑢)) < ((𝑦 / 2) / (2 · sup((abs “ (ran
𝑓 ∪ ran 𝑔)), ℝ, < )))) →
(∫2‘(𝑡
∈ ℝ ↦ if(𝑡
∈ (𝑢(,)𝑤), ((abs‘((𝐹‘𝑡) − ((𝑓‘𝑡) + (i · (𝑔‘𝑡))))) + (abs‘((𝑓‘𝑡) + (i · (𝑔‘𝑡))))), 0))) < 𝑦) |