Proof of Theorem ackbij1lem9
| Step | Hyp | Ref
| Expression |
| 1 | | inss2 3834 |
. . . . . . . . . 10
⊢
(𝒫 ω ∩ Fin) ⊆ Fin |
| 2 | 1 | sseli 3599 |
. . . . . . . . 9
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → 𝐴 ∈
Fin) |
| 3 | 2 | 3ad2ant1 1082 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐴 ∈ Fin) |
| 4 | | snfi 8038 |
. . . . . . . . . 10
⊢ {𝑦} ∈ Fin |
| 5 | | inss1 3833 |
. . . . . . . . . . . . . . . 16
⊢
(𝒫 ω ∩ Fin) ⊆ 𝒫 ω |
| 6 | 5 | sseli 3599 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → 𝐴 ∈
𝒫 ω) |
| 7 | 6 | elpwid 4170 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → 𝐴 ⊆
ω) |
| 8 | 7 | 3ad2ant1 1082 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐴 ⊆ ω) |
| 9 | | onfin2 8152 |
. . . . . . . . . . . . . 14
⊢ ω =
(On ∩ Fin) |
| 10 | | inss2 3834 |
. . . . . . . . . . . . . 14
⊢ (On ∩
Fin) ⊆ Fin |
| 11 | 9, 10 | eqsstri 3635 |
. . . . . . . . . . . . 13
⊢ ω
⊆ Fin |
| 12 | 8, 11 | syl6ss 3615 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐴 ⊆ Fin) |
| 13 | 12 | sselda 3603 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ Fin) |
| 14 | | pwfi 8261 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ Fin ↔ 𝒫
𝑦 ∈
Fin) |
| 15 | 13, 14 | sylib 208 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ 𝐴) → 𝒫 𝑦 ∈ Fin) |
| 16 | | xpfi 8231 |
. . . . . . . . . 10
⊢ (({𝑦} ∈ Fin ∧ 𝒫
𝑦 ∈ Fin) →
({𝑦} × 𝒫
𝑦) ∈
Fin) |
| 17 | 4, 15, 16 | sylancr 695 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ 𝐴) → ({𝑦} × 𝒫 𝑦) ∈ Fin) |
| 18 | 17 | ralrimiva 2966 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → ∀𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin) |
| 19 | | iunfi 8254 |
. . . . . . . 8
⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin) → ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin) |
| 20 | 3, 18, 19 | syl2anc 693 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin) |
| 21 | | ficardid 8788 |
. . . . . . 7
⊢ (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ≈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) |
| 22 | 20, 21 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → (card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ≈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) |
| 23 | 1 | sseli 3599 |
. . . . . . . . 9
⊢ (𝐵 ∈ (𝒫 ω ∩
Fin) → 𝐵 ∈
Fin) |
| 24 | 23 | 3ad2ant2 1083 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐵 ∈ Fin) |
| 25 | 5 | sseli 3599 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ (𝒫 ω ∩
Fin) → 𝐵 ∈
𝒫 ω) |
| 26 | 25 | elpwid 4170 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ (𝒫 ω ∩
Fin) → 𝐵 ⊆
ω) |
| 27 | 26 | 3ad2ant2 1083 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐵 ⊆ ω) |
| 28 | 27, 11 | syl6ss 3615 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐵 ⊆ Fin) |
| 29 | 28 | sselda 3603 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ Fin) |
| 30 | 29, 14 | sylib 208 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ 𝐵) → 𝒫 𝑦 ∈ Fin) |
| 31 | 4, 30, 16 | sylancr 695 |
. . . . . . . . 9
⊢ (((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ 𝐵) → ({𝑦} × 𝒫 𝑦) ∈ Fin) |
| 32 | 31 | ralrimiva 2966 |
. . . . . . . 8
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → ∀𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin) |
| 33 | | iunfi 8254 |
. . . . . . . 8
⊢ ((𝐵 ∈ Fin ∧ ∀𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin) → ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin) |
| 34 | 24, 32, 33 | syl2anc 693 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin) |
| 35 | | ficardid 8788 |
. . . . . . 7
⊢ (∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) ≈ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) |
| 36 | 34, 35 | syl 17 |
. . . . . 6
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) ≈ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) |
| 37 | | cdaen 8995 |
. . . . . 6
⊢
(((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ≈ ∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∧ (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) ≈ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) → ((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) +𝑐 (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦))) ≈ (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) +𝑐 ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦))) |
| 38 | 22, 36, 37 | syl2anc 693 |
. . . . 5
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → ((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) +𝑐 (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦))) ≈ (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) +𝑐 ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦))) |
| 39 | | djudisj 5561 |
. . . . . . . 8
⊢ ((𝐴 ∩ 𝐵) = ∅ → (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∩ ∪
𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) = ∅) |
| 40 | 39 | 3ad2ant3 1084 |
. . . . . . 7
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∩ ∪
𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) = ∅) |
| 41 | | cdaun 8994 |
. . . . . . 7
⊢
((∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin ∧ ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin ∧ (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∩ ∪
𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) = ∅) → (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) +𝑐 ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) ≈ (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∪ ∪
𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦))) |
| 42 | 20, 34, 40, 41 | syl3anc 1326 |
. . . . . 6
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) +𝑐 ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) ≈ (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∪ ∪
𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦))) |
| 43 | | iunxun 4605 |
. . . . . 6
⊢ ∪ 𝑦 ∈ (𝐴 ∪ 𝐵)({𝑦} × 𝒫 𝑦) = (∪
𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∪ ∪
𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) |
| 44 | 42, 43 | syl6breqr 4695 |
. . . . 5
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) +𝑐 ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) ≈ ∪ 𝑦 ∈ (𝐴 ∪ 𝐵)({𝑦} × 𝒫 𝑦)) |
| 45 | | entr 8008 |
. . . . 5
⊢
((((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) +𝑐 (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦))) ≈ (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) +𝑐 ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) ∧ (∪
𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) +𝑐 ∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) ≈ ∪ 𝑦 ∈ (𝐴 ∪ 𝐵)({𝑦} × 𝒫 𝑦)) → ((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) +𝑐 (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦))) ≈ ∪ 𝑦 ∈ (𝐴 ∪ 𝐵)({𝑦} × 𝒫 𝑦)) |
| 46 | 38, 44, 45 | syl2anc 693 |
. . . 4
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → ((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) +𝑐 (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦))) ≈ ∪ 𝑦 ∈ (𝐴 ∪ 𝐵)({𝑦} × 𝒫 𝑦)) |
| 47 | | carden2b 8793 |
. . . 4
⊢
(((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) +𝑐 (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦))) ≈ ∪ 𝑦 ∈ (𝐴 ∪ 𝐵)({𝑦} × 𝒫 𝑦) → (card‘((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) +𝑐 (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)))) = (card‘∪ 𝑦 ∈ (𝐴 ∪ 𝐵)({𝑦} × 𝒫 𝑦))) |
| 48 | 46, 47 | syl 17 |
. . 3
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) →
(card‘((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) +𝑐 (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)))) = (card‘∪ 𝑦 ∈ (𝐴 ∪ 𝐵)({𝑦} × 𝒫 𝑦))) |
| 49 | | ficardom 8787 |
. . . . 5
⊢ (∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ∈ ω) |
| 50 | 20, 49 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → (card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ∈ ω) |
| 51 | | ficardom 8787 |
. . . . 5
⊢ (∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦) ∈ Fin → (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) ∈ ω) |
| 52 | 34, 51 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) ∈ ω) |
| 53 | | nnacda 9023 |
. . . 4
⊢
(((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) ∈ ω ∧ (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)) ∈ ω) →
(card‘((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) +𝑐 (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)))) = ((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) +𝑜 (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)))) |
| 54 | 50, 52, 53 | syl2anc 693 |
. . 3
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) →
(card‘((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) +𝑐 (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)))) = ((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) +𝑜 (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)))) |
| 55 | 48, 54 | eqtr3d 2658 |
. 2
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → (card‘∪ 𝑦 ∈ (𝐴 ∪ 𝐵)({𝑦} × 𝒫 𝑦)) = ((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) +𝑜 (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)))) |
| 56 | | ackbij1lem6 9047 |
. . . 4
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin)) → (𝐴 ∪ 𝐵) ∈ (𝒫 ω ∩
Fin)) |
| 57 | 56 | 3adant3 1081 |
. . 3
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∪ 𝐵) ∈ (𝒫 ω ∩
Fin)) |
| 58 | | ackbij.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦
(card‘∪ 𝑦 ∈ 𝑥 ({𝑦} × 𝒫 𝑦))) |
| 59 | 58 | ackbij1lem7 9048 |
. . 3
⊢ ((𝐴 ∪ 𝐵) ∈ (𝒫 ω ∩ Fin)
→ (𝐹‘(𝐴 ∪ 𝐵)) = (card‘∪ 𝑦 ∈ (𝐴 ∪ 𝐵)({𝑦} × 𝒫 𝑦))) |
| 60 | 57, 59 | syl 17 |
. 2
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹‘(𝐴 ∪ 𝐵)) = (card‘∪ 𝑦 ∈ (𝐴 ∪ 𝐵)({𝑦} × 𝒫 𝑦))) |
| 61 | 58 | ackbij1lem7 9048 |
. . . 4
⊢ (𝐴 ∈ (𝒫 ω ∩
Fin) → (𝐹‘𝐴) = (card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦))) |
| 62 | 58 | ackbij1lem7 9048 |
. . . 4
⊢ (𝐵 ∈ (𝒫 ω ∩
Fin) → (𝐹‘𝐵) = (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦))) |
| 63 | 61, 62 | oveqan12d 6669 |
. . 3
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin)) → ((𝐹‘𝐴) +𝑜 (𝐹‘𝐵)) = ((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) +𝑜 (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)))) |
| 64 | 63 | 3adant3 1081 |
. 2
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹‘𝐴) +𝑜 (𝐹‘𝐵)) = ((card‘∪ 𝑦 ∈ 𝐴 ({𝑦} × 𝒫 𝑦)) +𝑜 (card‘∪ 𝑦 ∈ 𝐵 ({𝑦} × 𝒫 𝑦)))) |
| 65 | 55, 60, 64 | 3eqtr4d 2666 |
1
⊢ ((𝐴 ∈ (𝒫 ω ∩
Fin) ∧ 𝐵 ∈
(𝒫 ω ∩ Fin) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐹‘(𝐴 ∪ 𝐵)) = ((𝐹‘𝐴) +𝑜 (𝐹‘𝐵))) |