Proof of Theorem ackbij1lem9
Step | Hyp | Ref
| Expression |
1 | | inss2 3834 |
. . . . . . . . . 10
 
  |
2 | 1 | sseli 3599 |
. . . . . . . . 9
      |
3 | 2 | 3ad2ant1 1082 |
. . . . . . . 8
   

     
  |
4 | | snfi 8038 |
. . . . . . . . . 10
   |
5 | | inss1 3833 |
. . . . . . . . . . . . . . . 16
 
   |
6 | 5 | sseli 3599 |
. . . . . . . . . . . . . . 15
       |
7 | 6 | elpwid 4170 |
. . . . . . . . . . . . . 14
      |
8 | 7 | 3ad2ant1 1082 |
. . . . . . . . . . . . 13
   

        |
9 | | onfin2 8152 |
. . . . . . . . . . . . . 14

  |
10 | | inss2 3834 |
. . . . . . . . . . . . . 14
   |
11 | 9, 10 | eqsstri 3635 |
. . . . . . . . . . . . 13
 |
12 | 8, 11 | syl6ss 3615 |
. . . . . . . . . . . 12
   

        |
13 | 12 | sselda 3603 |
. . . . . . . . . . 11
           
   |
14 | | pwfi 8261 |
. . . . . . . . . . 11

   |
15 | 13, 14 | sylib 208 |
. . . . . . . . . 10
           
    |
16 | | xpfi 8231 |
. . . . . . . . . 10
             |
17 | 4, 15, 16 | sylancr 695 |
. . . . . . . . 9
           
        |
18 | 17 | ralrimiva 2966 |
. . . . . . . 8
   

      
       |
19 | | iunfi 8254 |
. . . . . . . 8
                 |
20 | 3, 18, 19 | syl2anc 693 |
. . . . . . 7
   

      
       |
21 | | ficardid 8788 |
. . . . . . 7
 
        
              |
22 | 20, 21 | syl 17 |
. . . . . 6
   

                
       |
23 | 1 | sseli 3599 |
. . . . . . . . 9
      |
24 | 23 | 3ad2ant2 1083 |
. . . . . . . 8
   

     
  |
25 | 5 | sseli 3599 |
. . . . . . . . . . . . . . 15
       |
26 | 25 | elpwid 4170 |
. . . . . . . . . . . . . 14
      |
27 | 26 | 3ad2ant2 1083 |
. . . . . . . . . . . . 13
   

        |
28 | 27, 11 | syl6ss 3615 |
. . . . . . . . . . . 12
   

        |
29 | 28 | sselda 3603 |
. . . . . . . . . . 11
           
   |
30 | 29, 14 | sylib 208 |
. . . . . . . . . 10
           
    |
31 | 4, 30, 16 | sylancr 695 |
. . . . . . . . 9
           
        |
32 | 31 | ralrimiva 2966 |
. . . . . . . 8
   

      
       |
33 | | iunfi 8254 |
. . . . . . . 8
                 |
34 | 24, 32, 33 | syl2anc 693 |
. . . . . . 7
   

      
       |
35 | | ficardid 8788 |
. . . . . . 7
 
        
              |
36 | 34, 35 | syl 17 |
. . . . . 6
   

                
       |
37 | | cdaen 8995 |
. . . . . 6
     
                      
          
         
        
     
        |
38 | 22, 36, 37 | syl2anc 693 |
. . . . 5
   

          
         
        
     
        |
39 | | djudisj 5561 |
. . . . . . . 8
  
 
     
        |
40 | 39 | 3ad2ant3 1084 |
. . . . . . 7
   

             
        |
41 | | cdaun 8994 |
. . . . . . 7
                    
         
     
             
        |
42 | 20, 34, 40, 41 | syl3anc 1326 |
. . . . . 6
   

             
             
        |
43 | | iunxun 4605 |
. . . . . 6
          
     
       |
44 | 42, 43 | syl6breqr 4695 |
. . . . 5
   

             
                 |
45 | | entr 8008 |
. . . . 5
      
         
        
     
             
                    
         
                  |
46 | 38, 44, 45 | syl2anc 693 |
. . . 4
   

          
         
                  |
47 | | carden2b 8793 |
. . . 4
     
         
                                                         |
48 | 46, 47 | syl 17 |
. . 3
   

                                               |
49 | | ficardom 8787 |
. . . . 5
 
        
        |
50 | 20, 49 | syl 17 |
. . . 4
   

                  |
51 | | ficardom 8787 |
. . . . 5
 
        
        |
52 | 34, 51 | syl 17 |
. . . 4
   

                  |
53 | | nnacda 9023 |
. . . 4
     
     
                            
                                |
54 | 50, 52, 53 | syl2anc 693 |
. . 3
   

                                              
         |
55 | 48, 54 | eqtr3d 2658 |
. 2
   

                       
         
         |
56 | | ackbij1lem6 9047 |
. . . 4
   

   
       |
57 | 56 | 3adant3 1081 |
. . 3
   

         
   |
58 | | ackbij.f |
. . . 4
       
        |
59 | 58 | ackbij1lem7 9048 |
. . 3
                           |
60 | 57, 59 | syl 17 |
. 2
   

         
                 |
61 | 58 | ackbij1lem7 9048 |
. . . 4
           
        |
62 | 58 | ackbij1lem7 9048 |
. . . 4
           
        |
63 | 61, 62 | oveqan12d 6669 |
. . 3
   

   
              
         
         |
64 | 63 | 3adant3 1081 |
. 2
   

                                        |
65 | 55, 60, 64 | 3eqtr4d 2666 |
1
   

         
              |