MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cdaen Structured version   Visualization version   GIF version

Theorem cdaen 8995
Description: Cardinal addition of equinumerous sets. Exercise 4.56(b) of [Mendelson] p. 258. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
cdaen ((𝐴𝐵𝐶𝐷) → (𝐴 +𝑐 𝐶) ≈ (𝐵 +𝑐 𝐷))

Proof of Theorem cdaen
StepHypRef Expression
1 relen 7960 . . . . . 6 Rel ≈
21brrelexi 5158 . . . . 5 (𝐴𝐵𝐴 ∈ V)
3 0ex 4790 . . . . 5 ∅ ∈ V
4 xpsneng 8045 . . . . 5 ((𝐴 ∈ V ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴)
52, 3, 4sylancl 694 . . . 4 (𝐴𝐵 → (𝐴 × {∅}) ≈ 𝐴)
61brrelex2i 5159 . . . . . . 7 (𝐴𝐵𝐵 ∈ V)
7 xpsneng 8045 . . . . . . 7 ((𝐵 ∈ V ∧ ∅ ∈ V) → (𝐵 × {∅}) ≈ 𝐵)
86, 3, 7sylancl 694 . . . . . 6 (𝐴𝐵 → (𝐵 × {∅}) ≈ 𝐵)
98ensymd 8007 . . . . 5 (𝐴𝐵𝐵 ≈ (𝐵 × {∅}))
10 entr 8008 . . . . 5 ((𝐴𝐵𝐵 ≈ (𝐵 × {∅})) → 𝐴 ≈ (𝐵 × {∅}))
119, 10mpdan 702 . . . 4 (𝐴𝐵𝐴 ≈ (𝐵 × {∅}))
12 entr 8008 . . . 4 (((𝐴 × {∅}) ≈ 𝐴𝐴 ≈ (𝐵 × {∅})) → (𝐴 × {∅}) ≈ (𝐵 × {∅}))
135, 11, 12syl2anc 693 . . 3 (𝐴𝐵 → (𝐴 × {∅}) ≈ (𝐵 × {∅}))
141brrelexi 5158 . . . . 5 (𝐶𝐷𝐶 ∈ V)
15 1on 7567 . . . . 5 1𝑜 ∈ On
16 xpsneng 8045 . . . . 5 ((𝐶 ∈ V ∧ 1𝑜 ∈ On) → (𝐶 × {1𝑜}) ≈ 𝐶)
1714, 15, 16sylancl 694 . . . 4 (𝐶𝐷 → (𝐶 × {1𝑜}) ≈ 𝐶)
181brrelex2i 5159 . . . . . . 7 (𝐶𝐷𝐷 ∈ V)
19 xpsneng 8045 . . . . . . 7 ((𝐷 ∈ V ∧ 1𝑜 ∈ On) → (𝐷 × {1𝑜}) ≈ 𝐷)
2018, 15, 19sylancl 694 . . . . . 6 (𝐶𝐷 → (𝐷 × {1𝑜}) ≈ 𝐷)
2120ensymd 8007 . . . . 5 (𝐶𝐷𝐷 ≈ (𝐷 × {1𝑜}))
22 entr 8008 . . . . 5 ((𝐶𝐷𝐷 ≈ (𝐷 × {1𝑜})) → 𝐶 ≈ (𝐷 × {1𝑜}))
2321, 22mpdan 702 . . . 4 (𝐶𝐷𝐶 ≈ (𝐷 × {1𝑜}))
24 entr 8008 . . . 4 (((𝐶 × {1𝑜}) ≈ 𝐶𝐶 ≈ (𝐷 × {1𝑜})) → (𝐶 × {1𝑜}) ≈ (𝐷 × {1𝑜}))
2517, 23, 24syl2anc 693 . . 3 (𝐶𝐷 → (𝐶 × {1𝑜}) ≈ (𝐷 × {1𝑜}))
26 xp01disj 7576 . . . 4 ((𝐴 × {∅}) ∩ (𝐶 × {1𝑜})) = ∅
27 xp01disj 7576 . . . 4 ((𝐵 × {∅}) ∩ (𝐷 × {1𝑜})) = ∅
28 unen 8040 . . . 4 ((((𝐴 × {∅}) ≈ (𝐵 × {∅}) ∧ (𝐶 × {1𝑜}) ≈ (𝐷 × {1𝑜})) ∧ (((𝐴 × {∅}) ∩ (𝐶 × {1𝑜})) = ∅ ∧ ((𝐵 × {∅}) ∩ (𝐷 × {1𝑜})) = ∅)) → ((𝐴 × {∅}) ∪ (𝐶 × {1𝑜})) ≈ ((𝐵 × {∅}) ∪ (𝐷 × {1𝑜})))
2926, 27, 28mpanr12 721 . . 3 (((𝐴 × {∅}) ≈ (𝐵 × {∅}) ∧ (𝐶 × {1𝑜}) ≈ (𝐷 × {1𝑜})) → ((𝐴 × {∅}) ∪ (𝐶 × {1𝑜})) ≈ ((𝐵 × {∅}) ∪ (𝐷 × {1𝑜})))
3013, 25, 29syl2an 494 . 2 ((𝐴𝐵𝐶𝐷) → ((𝐴 × {∅}) ∪ (𝐶 × {1𝑜})) ≈ ((𝐵 × {∅}) ∪ (𝐷 × {1𝑜})))
31 cdaval 8992 . . 3 ((𝐴 ∈ V ∧ 𝐶 ∈ V) → (𝐴 +𝑐 𝐶) = ((𝐴 × {∅}) ∪ (𝐶 × {1𝑜})))
322, 14, 31syl2an 494 . 2 ((𝐴𝐵𝐶𝐷) → (𝐴 +𝑐 𝐶) = ((𝐴 × {∅}) ∪ (𝐶 × {1𝑜})))
33 cdaval 8992 . . 3 ((𝐵 ∈ V ∧ 𝐷 ∈ V) → (𝐵 +𝑐 𝐷) = ((𝐵 × {∅}) ∪ (𝐷 × {1𝑜})))
346, 18, 33syl2an 494 . 2 ((𝐴𝐵𝐶𝐷) → (𝐵 +𝑐 𝐷) = ((𝐵 × {∅}) ∪ (𝐷 × {1𝑜})))
3530, 32, 343brtr4d 4685 1 ((𝐴𝐵𝐶𝐷) → (𝐴 +𝑐 𝐶) ≈ (𝐵 +𝑐 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  cin 3573  c0 3915  {csn 4177   class class class wbr 4653   × cxp 5112  Oncon0 5723  (class class class)co 6650  1𝑜c1o 7553  cen 7952   +𝑐 ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1o 7560  df-er 7742  df-en 7956  df-cda 8990
This theorem is referenced by:  cdaenun  8996  cardacda  9020  pwsdompw  9026  ackbij1lem5  9046  ackbij1lem9  9050  gchhar  9501
  Copyright terms: Public domain W3C validator