MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem14 Structured version   Visualization version   GIF version

Theorem ackbij1lem14 9055
Description: Lemma for ackbij1 9060. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem14 (𝐴 ∈ ω → (𝐹‘{𝐴}) = suc (𝐹𝐴))
Distinct variable groups:   𝑥,𝐹,𝑦   𝑥,𝐴,𝑦

Proof of Theorem ackbij1lem14
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ackbij.f . . 3 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
21ackbij1lem8 9049 . 2 (𝐴 ∈ ω → (𝐹‘{𝐴}) = (card‘𝒫 𝐴))
3 pweq 4161 . . . . 5 (𝑎 = ∅ → 𝒫 𝑎 = 𝒫 ∅)
43fveq2d 6195 . . . 4 (𝑎 = ∅ → (card‘𝒫 𝑎) = (card‘𝒫 ∅))
5 fveq2 6191 . . . . 5 (𝑎 = ∅ → (𝐹𝑎) = (𝐹‘∅))
6 suceq 5790 . . . . 5 ((𝐹𝑎) = (𝐹‘∅) → suc (𝐹𝑎) = suc (𝐹‘∅))
75, 6syl 17 . . . 4 (𝑎 = ∅ → suc (𝐹𝑎) = suc (𝐹‘∅))
84, 7eqeq12d 2637 . . 3 (𝑎 = ∅ → ((card‘𝒫 𝑎) = suc (𝐹𝑎) ↔ (card‘𝒫 ∅) = suc (𝐹‘∅)))
9 pweq 4161 . . . . 5 (𝑎 = 𝑏 → 𝒫 𝑎 = 𝒫 𝑏)
109fveq2d 6195 . . . 4 (𝑎 = 𝑏 → (card‘𝒫 𝑎) = (card‘𝒫 𝑏))
11 fveq2 6191 . . . . 5 (𝑎 = 𝑏 → (𝐹𝑎) = (𝐹𝑏))
12 suceq 5790 . . . . 5 ((𝐹𝑎) = (𝐹𝑏) → suc (𝐹𝑎) = suc (𝐹𝑏))
1311, 12syl 17 . . . 4 (𝑎 = 𝑏 → suc (𝐹𝑎) = suc (𝐹𝑏))
1410, 13eqeq12d 2637 . . 3 (𝑎 = 𝑏 → ((card‘𝒫 𝑎) = suc (𝐹𝑎) ↔ (card‘𝒫 𝑏) = suc (𝐹𝑏)))
15 pweq 4161 . . . . 5 (𝑎 = suc 𝑏 → 𝒫 𝑎 = 𝒫 suc 𝑏)
1615fveq2d 6195 . . . 4 (𝑎 = suc 𝑏 → (card‘𝒫 𝑎) = (card‘𝒫 suc 𝑏))
17 fveq2 6191 . . . . 5 (𝑎 = suc 𝑏 → (𝐹𝑎) = (𝐹‘suc 𝑏))
18 suceq 5790 . . . . 5 ((𝐹𝑎) = (𝐹‘suc 𝑏) → suc (𝐹𝑎) = suc (𝐹‘suc 𝑏))
1917, 18syl 17 . . . 4 (𝑎 = suc 𝑏 → suc (𝐹𝑎) = suc (𝐹‘suc 𝑏))
2016, 19eqeq12d 2637 . . 3 (𝑎 = suc 𝑏 → ((card‘𝒫 𝑎) = suc (𝐹𝑎) ↔ (card‘𝒫 suc 𝑏) = suc (𝐹‘suc 𝑏)))
21 pweq 4161 . . . . 5 (𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴)
2221fveq2d 6195 . . . 4 (𝑎 = 𝐴 → (card‘𝒫 𝑎) = (card‘𝒫 𝐴))
23 fveq2 6191 . . . . 5 (𝑎 = 𝐴 → (𝐹𝑎) = (𝐹𝐴))
24 suceq 5790 . . . . 5 ((𝐹𝑎) = (𝐹𝐴) → suc (𝐹𝑎) = suc (𝐹𝐴))
2523, 24syl 17 . . . 4 (𝑎 = 𝐴 → suc (𝐹𝑎) = suc (𝐹𝐴))
2622, 25eqeq12d 2637 . . 3 (𝑎 = 𝐴 → ((card‘𝒫 𝑎) = suc (𝐹𝑎) ↔ (card‘𝒫 𝐴) = suc (𝐹𝐴)))
27 df-1o 7560 . . . 4 1𝑜 = suc ∅
28 pw0 4343 . . . . . 6 𝒫 ∅ = {∅}
2928fveq2i 6194 . . . . 5 (card‘𝒫 ∅) = (card‘{∅})
30 0ex 4790 . . . . . 6 ∅ ∈ V
31 cardsn 8795 . . . . . 6 (∅ ∈ V → (card‘{∅}) = 1𝑜)
3230, 31ax-mp 5 . . . . 5 (card‘{∅}) = 1𝑜
3329, 32eqtri 2644 . . . 4 (card‘𝒫 ∅) = 1𝑜
341ackbij1lem13 9054 . . . . 5 (𝐹‘∅) = ∅
35 suceq 5790 . . . . 5 ((𝐹‘∅) = ∅ → suc (𝐹‘∅) = suc ∅)
3634, 35ax-mp 5 . . . 4 suc (𝐹‘∅) = suc ∅
3727, 33, 363eqtr4i 2654 . . 3 (card‘𝒫 ∅) = suc (𝐹‘∅)
38 oveq2 6658 . . . . . 6 ((card‘𝒫 𝑏) = suc (𝐹𝑏) → ((card‘𝒫 𝑏) +𝑜 (card‘𝒫 𝑏)) = ((card‘𝒫 𝑏) +𝑜 suc (𝐹𝑏)))
3938adantl 482 . . . . 5 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → ((card‘𝒫 𝑏) +𝑜 (card‘𝒫 𝑏)) = ((card‘𝒫 𝑏) +𝑜 suc (𝐹𝑏)))
40 ackbij1lem5 9046 . . . . . 6 (𝑏 ∈ ω → (card‘𝒫 suc 𝑏) = ((card‘𝒫 𝑏) +𝑜 (card‘𝒫 𝑏)))
4140adantr 481 . . . . 5 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → (card‘𝒫 suc 𝑏) = ((card‘𝒫 𝑏) +𝑜 (card‘𝒫 𝑏)))
42 df-suc 5729 . . . . . . . . . 10 suc 𝑏 = (𝑏 ∪ {𝑏})
4342equncomi 3759 . . . . . . . . 9 suc 𝑏 = ({𝑏} ∪ 𝑏)
4443fveq2i 6194 . . . . . . . 8 (𝐹‘suc 𝑏) = (𝐹‘({𝑏} ∪ 𝑏))
45 ackbij1lem4 9045 . . . . . . . . . . 11 (𝑏 ∈ ω → {𝑏} ∈ (𝒫 ω ∩ Fin))
4645adantr 481 . . . . . . . . . 10 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → {𝑏} ∈ (𝒫 ω ∩ Fin))
47 ackbij1lem3 9044 . . . . . . . . . . 11 (𝑏 ∈ ω → 𝑏 ∈ (𝒫 ω ∩ Fin))
4847adantr 481 . . . . . . . . . 10 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → 𝑏 ∈ (𝒫 ω ∩ Fin))
49 incom 3805 . . . . . . . . . . . 12 ({𝑏} ∩ 𝑏) = (𝑏 ∩ {𝑏})
50 nnord 7073 . . . . . . . . . . . . 13 (𝑏 ∈ ω → Ord 𝑏)
51 orddisj 5762 . . . . . . . . . . . . 13 (Ord 𝑏 → (𝑏 ∩ {𝑏}) = ∅)
5250, 51syl 17 . . . . . . . . . . . 12 (𝑏 ∈ ω → (𝑏 ∩ {𝑏}) = ∅)
5349, 52syl5eq 2668 . . . . . . . . . . 11 (𝑏 ∈ ω → ({𝑏} ∩ 𝑏) = ∅)
5453adantr 481 . . . . . . . . . 10 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → ({𝑏} ∩ 𝑏) = ∅)
551ackbij1lem9 9050 . . . . . . . . . 10 (({𝑏} ∈ (𝒫 ω ∩ Fin) ∧ 𝑏 ∈ (𝒫 ω ∩ Fin) ∧ ({𝑏} ∩ 𝑏) = ∅) → (𝐹‘({𝑏} ∪ 𝑏)) = ((𝐹‘{𝑏}) +𝑜 (𝐹𝑏)))
5646, 48, 54, 55syl3anc 1326 . . . . . . . . 9 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → (𝐹‘({𝑏} ∪ 𝑏)) = ((𝐹‘{𝑏}) +𝑜 (𝐹𝑏)))
571ackbij1lem8 9049 . . . . . . . . . . 11 (𝑏 ∈ ω → (𝐹‘{𝑏}) = (card‘𝒫 𝑏))
5857adantr 481 . . . . . . . . . 10 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → (𝐹‘{𝑏}) = (card‘𝒫 𝑏))
5958oveq1d 6665 . . . . . . . . 9 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → ((𝐹‘{𝑏}) +𝑜 (𝐹𝑏)) = ((card‘𝒫 𝑏) +𝑜 (𝐹𝑏)))
6056, 59eqtrd 2656 . . . . . . . 8 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → (𝐹‘({𝑏} ∪ 𝑏)) = ((card‘𝒫 𝑏) +𝑜 (𝐹𝑏)))
6144, 60syl5eq 2668 . . . . . . 7 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → (𝐹‘suc 𝑏) = ((card‘𝒫 𝑏) +𝑜 (𝐹𝑏)))
62 suceq 5790 . . . . . . 7 ((𝐹‘suc 𝑏) = ((card‘𝒫 𝑏) +𝑜 (𝐹𝑏)) → suc (𝐹‘suc 𝑏) = suc ((card‘𝒫 𝑏) +𝑜 (𝐹𝑏)))
6361, 62syl 17 . . . . . 6 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → suc (𝐹‘suc 𝑏) = suc ((card‘𝒫 𝑏) +𝑜 (𝐹𝑏)))
64 nnfi 8153 . . . . . . . . . 10 (𝑏 ∈ ω → 𝑏 ∈ Fin)
65 pwfi 8261 . . . . . . . . . 10 (𝑏 ∈ Fin ↔ 𝒫 𝑏 ∈ Fin)
6664, 65sylib 208 . . . . . . . . 9 (𝑏 ∈ ω → 𝒫 𝑏 ∈ Fin)
6766adantr 481 . . . . . . . 8 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → 𝒫 𝑏 ∈ Fin)
68 ficardom 8787 . . . . . . . 8 (𝒫 𝑏 ∈ Fin → (card‘𝒫 𝑏) ∈ ω)
6967, 68syl 17 . . . . . . 7 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → (card‘𝒫 𝑏) ∈ ω)
701ackbij1lem10 9051 . . . . . . . . 9 𝐹:(𝒫 ω ∩ Fin)⟶ω
7170ffvelrni 6358 . . . . . . . 8 (𝑏 ∈ (𝒫 ω ∩ Fin) → (𝐹𝑏) ∈ ω)
7248, 71syl 17 . . . . . . 7 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → (𝐹𝑏) ∈ ω)
73 nnasuc 7686 . . . . . . 7 (((card‘𝒫 𝑏) ∈ ω ∧ (𝐹𝑏) ∈ ω) → ((card‘𝒫 𝑏) +𝑜 suc (𝐹𝑏)) = suc ((card‘𝒫 𝑏) +𝑜 (𝐹𝑏)))
7469, 72, 73syl2anc 693 . . . . . 6 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → ((card‘𝒫 𝑏) +𝑜 suc (𝐹𝑏)) = suc ((card‘𝒫 𝑏) +𝑜 (𝐹𝑏)))
7563, 74eqtr4d 2659 . . . . 5 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → suc (𝐹‘suc 𝑏) = ((card‘𝒫 𝑏) +𝑜 suc (𝐹𝑏)))
7639, 41, 753eqtr4d 2666 . . . 4 ((𝑏 ∈ ω ∧ (card‘𝒫 𝑏) = suc (𝐹𝑏)) → (card‘𝒫 suc 𝑏) = suc (𝐹‘suc 𝑏))
7776ex 450 . . 3 (𝑏 ∈ ω → ((card‘𝒫 𝑏) = suc (𝐹𝑏) → (card‘𝒫 suc 𝑏) = suc (𝐹‘suc 𝑏)))
788, 14, 20, 26, 37, 77finds 7092 . 2 (𝐴 ∈ ω → (card‘𝒫 𝐴) = suc (𝐹𝐴))
792, 78eqtrd 2656 1 (𝐴 ∈ ω → (𝐹‘{𝐴}) = suc (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  cin 3573  c0 3915  𝒫 cpw 4158  {csn 4177   ciun 4520  cmpt 4729   × cxp 5112  Ord word 5722  suc csuc 5725  cfv 5888  (class class class)co 6650  ωcom 7065  1𝑜c1o 7553   +𝑜 coa 7557  Fincfn 7955  cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990
This theorem is referenced by:  ackbij1lem15  9056  ackbij1lem18  9059  ackbij1b  9061
  Copyright terms: Public domain W3C validator