Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0gtfsumgt Structured version   Visualization version   GIF version

Theorem sge0gtfsumgt 40660
Description: If the generalized sum of nonnegative reals is larger than a given number, then that number can be dominated by a finite subsum. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
Hypotheses
Ref Expression
sge0gtfsumgt.k 𝑘𝜑
sge0gtfsumgt.a (𝜑𝐴𝑉)
sge0gtfsumgt.b ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
sge0gtfsumgt.c (𝜑𝐶 ∈ ℝ)
sge0gtfsumgt.l (𝜑𝐶 < (Σ^‘(𝑘𝐴𝐵)))
Assertion
Ref Expression
sge0gtfsumgt (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
Distinct variable groups:   𝐴,𝑘,𝑦   𝑦,𝐵   𝑦,𝐶   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)   𝐶(𝑘)   𝑉(𝑦,𝑘)

Proof of Theorem sge0gtfsumgt
StepHypRef Expression
1 sge0gtfsumgt.k . . . . 5 𝑘𝜑
2 nfcv 2764 . . . . . . 7 𝑘Σ^
3 nfmpt1 4747 . . . . . . 7 𝑘(𝑘𝐴𝐵)
42, 3nffv 6198 . . . . . 6 𝑘^‘(𝑘𝐴𝐵))
5 nfcv 2764 . . . . . 6 𝑘
64, 5nfel 2777 . . . . 5 𝑘^‘(𝑘𝐴𝐵)) ∈ ℝ
71, 6nfan 1828 . . . 4 𝑘(𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
8 sge0gtfsumgt.a . . . . 5 (𝜑𝐴𝑉)
98adantr 481 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝐴𝑉)
10 icossicc 12260 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
11 sge0gtfsumgt.b . . . . . 6 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
1210, 11sseldi 3601 . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
1312adantlr 751 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
14 sge0gtfsumgt.l . . . . . 6 (𝜑𝐶 < (Σ^‘(𝑘𝐴𝐵)))
1514adantr 481 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝐶 < (Σ^‘(𝑘𝐴𝐵)))
16 sge0gtfsumgt.c . . . . . . 7 (𝜑𝐶 ∈ ℝ)
1716adantr 481 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝐶 ∈ ℝ)
18 simpr 477 . . . . . 6 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
19 difrp 11868 . . . . . 6 ((𝐶 ∈ ℝ ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (𝐶 < (Σ^‘(𝑘𝐴𝐵)) ↔ ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℝ+))
2017, 18, 19syl2anc 693 . . . . 5 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (𝐶 < (Σ^‘(𝑘𝐴𝐵)) ↔ ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℝ+))
2115, 20mpbid 222 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℝ+)
227, 9, 13, 21, 18sge0ltfirpmpt2 40643 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)))
23 simpr 477 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)))
24 nfv 1843 . . . . . . . . . . . . 13 𝑘 𝑦 ∈ (𝒫 𝐴 ∩ Fin)
251, 24nfan 1828 . . . . . . . . . . . 12 𝑘(𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin))
26 elinel2 3800 . . . . . . . . . . . . 13 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
2726adantl 482 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
28 simpll 790 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝜑)
29 elpwinss 39216 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
3029adantr 481 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑦𝐴)
31 simpr 477 . . . . . . . . . . . . . . 15 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝑦)
3230, 31sseldd 3604 . . . . . . . . . . . . . 14 ((𝑦 ∈ (𝒫 𝐴 ∩ Fin) ∧ 𝑘𝑦) → 𝑘𝐴)
3332adantll 750 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝑘𝐴)
34 rge0ssre 12280 . . . . . . . . . . . . . 14 (0[,)+∞) ⊆ ℝ
3534, 11sseldi 3601 . . . . . . . . . . . . 13 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
3628, 33, 35syl2anc 693 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑦) → 𝐵 ∈ ℝ)
3725, 27, 36fsumreclf 39808 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝐵 ∈ ℝ)
3837recnd 10068 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → Σ𝑘𝑦 𝐵 ∈ ℂ)
3938ad4ant13 1292 . . . . . . . . 9 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → Σ𝑘𝑦 𝐵 ∈ ℂ)
4018ad2antrr 762 . . . . . . . . . . 11 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
4140recnd 10068 . . . . . . . . . 10 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ^‘(𝑘𝐴𝐵)) ∈ ℂ)
4217ad2antrr 762 . . . . . . . . . . 11 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → 𝐶 ∈ ℝ)
4342recnd 10068 . . . . . . . . . 10 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → 𝐶 ∈ ℂ)
4441, 43subcld 10392 . . . . . . . . 9 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℂ)
4539, 44addcomd 10238 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) = (((Σ^‘(𝑘𝐴𝐵)) − 𝐶) + Σ𝑘𝑦 𝐵))
4623, 45breqtrd 4679 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (Σ^‘(𝑘𝐴𝐵)) < (((Σ^‘(𝑘𝐴𝐵)) − 𝐶) + Σ𝑘𝑦 𝐵))
4740, 42resubcld 10458 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → ((Σ^‘(𝑘𝐴𝐵)) − 𝐶) ∈ ℝ)
4837ad4ant13 1292 . . . . . . . 8 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → Σ𝑘𝑦 𝐵 ∈ ℝ)
4940, 47, 48ltsubadd2d 10625 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (((Σ^‘(𝑘𝐴𝐵)) − ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) < Σ𝑘𝑦 𝐵 ↔ (Σ^‘(𝑘𝐴𝐵)) < (((Σ^‘(𝑘𝐴𝐵)) − 𝐶) + Σ𝑘𝑦 𝐵)))
5046, 49mpbird 247 . . . . . 6 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → ((Σ^‘(𝑘𝐴𝐵)) − ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) < Σ𝑘𝑦 𝐵)
5141, 43nncand 10397 . . . . . . 7 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → ((Σ^‘(𝑘𝐴𝐵)) − ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) = 𝐶)
5251breq1d 4663 . . . . . 6 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → (((Σ^‘(𝑘𝐴𝐵)) − ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) < Σ𝑘𝑦 𝐵𝐶 < Σ𝑘𝑦 𝐵))
5350, 52mpbid 222 . . . . 5 ((((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶))) → 𝐶 < Σ𝑘𝑦 𝐵)
5453ex 450 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) → 𝐶 < Σ𝑘𝑦 𝐵))
5554reximdva 3017 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑘𝐴𝐵)) < (Σ𝑘𝑦 𝐵 + ((Σ^‘(𝑘𝐴𝐵)) − 𝐶)) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵))
5622, 55mpd 15 . 2 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
57 simpl 473 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → 𝜑)
58 simpr 477 . . . . 5 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ)
59 eqid 2622 . . . . . . . . 9 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
601, 11, 59fmptdf 6387 . . . . . . . 8 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,)+∞))
6110a1i 11 . . . . . . . 8 (𝜑 → (0[,)+∞) ⊆ (0[,]+∞))
6260, 61fssd 6057 . . . . . . 7 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
638, 62sge0repnf 40603 . . . . . 6 (𝜑 → ((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞))
6463adantr 481 . . . . 5 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ((Σ^‘(𝑘𝐴𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞))
6558, 64mtbid 314 . . . 4 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ¬ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞)
66 notnotb 304 . . . 4 ((Σ^‘(𝑘𝐴𝐵)) = +∞ ↔ ¬ ¬ (Σ^‘(𝑘𝐴𝐵)) = +∞)
6765, 66sylibr 224 . . 3 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → (Σ^‘(𝑘𝐴𝐵)) = +∞)
684nfeq1 2778 . . . . 5 𝑘^‘(𝑘𝐴𝐵)) = +∞
691, 68nfan 1828 . . . 4 𝑘(𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞)
708adantr 481 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → 𝐴𝑉)
7111adantlr 751 . . . 4 (((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) ∧ 𝑘𝐴) → 𝐵 ∈ (0[,)+∞))
72 simpr 477 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → (Σ^‘(𝑘𝐴𝐵)) = +∞)
7316adantr 481 . . . 4 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → 𝐶 ∈ ℝ)
7469, 70, 71, 72, 73sge0pnffsumgt 40659 . . 3 ((𝜑 ∧ (Σ^‘(𝑘𝐴𝐵)) = +∞) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
7557, 67, 74syl2anc 693 . 2 ((𝜑 ∧ ¬ (Σ^‘(𝑘𝐴𝐵)) ∈ ℝ) → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
7656, 75pm2.61dan 832 1 (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘𝑦 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wnf 1708  wcel 1990  wrex 2913  cin 3573  wss 3574  𝒫 cpw 4158   class class class wbr 4653  cmpt 4729  cfv 5888  (class class class)co 6650  Fincfn 7955  cc 9934  cr 9935  0cc0 9936   + caddc 9939  +∞cpnf 10071   < clt 10074  cmin 10266  +crp 11832  [,)cico 12177  [,]cicc 12178  Σcsu 14416  Σ^csumge0 40579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-oi 8415  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-sumge0 40580
This theorem is referenced by:  sge0uzfsumgt  40661  sge0seq  40663
  Copyright terms: Public domain W3C validator