Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxr Structured version   Visualization version   GIF version

Theorem infxr 39583
Description: The infimum of a set of extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
infxr.x 𝑥𝜑
infxr.y 𝑦𝜑
infxr.a (𝜑𝐴 ⊆ ℝ*)
infxr.b (𝜑𝐵 ∈ ℝ*)
infxr.n (𝜑 → ∀𝑥𝐴 ¬ 𝑥 < 𝐵)
infxr.e (𝜑 → ∀𝑥 ∈ ℝ (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
Assertion
Ref Expression
infxr (𝜑 → inf(𝐴, ℝ*, < ) = 𝐵)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem infxr
StepHypRef Expression
1 infxr.b . 2 (𝜑𝐵 ∈ ℝ*)
2 infxr.n . 2 (𝜑 → ∀𝑥𝐴 ¬ 𝑥 < 𝐵)
3 infxr.x . . 3 𝑥𝜑
4 infxr.e . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℝ (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
54r19.21bi 2932 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
65adantlr 751 . . . . 5 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑥 ∈ ℝ) → (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
7 simplll 798 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝜑)
8 simpllr 799 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝑥 ∈ ℝ*)
9 simplr 792 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → ¬ 𝑥 ∈ ℝ)
10 mnfxr 10096 . . . . . . . . . . 11 -∞ ∈ ℝ*
1110a1i 11 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ*) ∧ 𝐵 < 𝑥) → -∞ ∈ ℝ*)
12 simplr 792 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ*) ∧ 𝐵 < 𝑥) → 𝑥 ∈ ℝ*)
131ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ*) ∧ 𝐵 < 𝑥) → 𝐵 ∈ ℝ*)
14 mnfle 11969 . . . . . . . . . . . . 13 (𝐵 ∈ ℝ* → -∞ ≤ 𝐵)
151, 14syl 17 . . . . . . . . . . . 12 (𝜑 → -∞ ≤ 𝐵)
1615ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ*) ∧ 𝐵 < 𝑥) → -∞ ≤ 𝐵)
17 simpr 477 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ*) ∧ 𝐵 < 𝑥) → 𝐵 < 𝑥)
1811, 13, 12, 16, 17xrlelttrd 11991 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ*) ∧ 𝐵 < 𝑥) → -∞ < 𝑥)
1911, 12, 18xrgtned 39538 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ*) ∧ 𝐵 < 𝑥) → 𝑥 ≠ -∞)
2019adantlr 751 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝑥 ≠ -∞)
218, 9, 20xrnmnfpnf 39256 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝑥 = +∞)
22 simpr 477 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → 𝐵 < 𝑥)
23 simpl 473 . . . . . . . . . . . 12 ((𝜑𝐵 = -∞) → 𝜑)
24 id 22 . . . . . . . . . . . . . 14 (𝐵 = -∞ → 𝐵 = -∞)
25 1re 10039 . . . . . . . . . . . . . . 15 1 ∈ ℝ
26 mnflt 11957 . . . . . . . . . . . . . . 15 (1 ∈ ℝ → -∞ < 1)
2725, 26ax-mp 5 . . . . . . . . . . . . . 14 -∞ < 1
2824, 27syl6eqbr 4692 . . . . . . . . . . . . 13 (𝐵 = -∞ → 𝐵 < 1)
2928adantl 482 . . . . . . . . . . . 12 ((𝜑𝐵 = -∞) → 𝐵 < 1)
30 1red 10055 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ)
31 breq2 4657 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (𝐵 < 𝑥𝐵 < 1))
32 breq2 4657 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (𝑦 < 𝑥𝑦 < 1))
3332rexbidv 3052 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (∃𝑦𝐴 𝑦 < 𝑥 ↔ ∃𝑦𝐴 𝑦 < 1))
3431, 33imbi12d 334 . . . . . . . . . . . . . 14 (𝑥 = 1 → ((𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥) ↔ (𝐵 < 1 → ∃𝑦𝐴 𝑦 < 1)))
3534rspcva 3307 . . . . . . . . . . . . 13 ((1 ∈ ℝ ∧ ∀𝑥 ∈ ℝ (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥)) → (𝐵 < 1 → ∃𝑦𝐴 𝑦 < 1))
3630, 4, 35syl2anc 693 . . . . . . . . . . . 12 (𝜑 → (𝐵 < 1 → ∃𝑦𝐴 𝑦 < 1))
3723, 29, 36sylc 65 . . . . . . . . . . 11 ((𝜑𝐵 = -∞) → ∃𝑦𝐴 𝑦 < 1)
3837adantlr 751 . . . . . . . . . 10 (((𝜑𝑥 = +∞) ∧ 𝐵 = -∞) → ∃𝑦𝐴 𝑦 < 1)
39 infxr.y . . . . . . . . . . . . 13 𝑦𝜑
40 nfv 1843 . . . . . . . . . . . . 13 𝑦 𝑥 = +∞
4139, 40nfan 1828 . . . . . . . . . . . 12 𝑦(𝜑𝑥 = +∞)
42 infxr.a . . . . . . . . . . . . . . . . 17 (𝜑𝐴 ⊆ ℝ*)
4342sselda 3603 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝐴) → 𝑦 ∈ ℝ*)
4443ad4ant13 1292 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 = +∞) ∧ 𝑦𝐴) ∧ 𝑦 < 1) → 𝑦 ∈ ℝ*)
4525rexri 10097 . . . . . . . . . . . . . . . 16 1 ∈ ℝ*
4645a1i 11 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 = +∞) ∧ 𝑦𝐴) ∧ 𝑦 < 1) → 1 ∈ ℝ*)
47 id 22 . . . . . . . . . . . . . . . . . 18 (𝑥 = +∞ → 𝑥 = +∞)
48 pnfxr 10092 . . . . . . . . . . . . . . . . . 18 +∞ ∈ ℝ*
4947, 48syl6eqel 2709 . . . . . . . . . . . . . . . . 17 (𝑥 = +∞ → 𝑥 ∈ ℝ*)
5049adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = +∞) → 𝑥 ∈ ℝ*)
5150ad2antrr 762 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 = +∞) ∧ 𝑦𝐴) ∧ 𝑦 < 1) → 𝑥 ∈ ℝ*)
52 simpr 477 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 = +∞) ∧ 𝑦𝐴) ∧ 𝑦 < 1) → 𝑦 < 1)
53 ltpnf 11954 . . . . . . . . . . . . . . . . . . . 20 (1 ∈ ℝ → 1 < +∞)
5425, 53ax-mp 5 . . . . . . . . . . . . . . . . . . 19 1 < +∞
5554a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑥 = +∞ → 1 < +∞)
5647eqcomd 2628 . . . . . . . . . . . . . . . . . 18 (𝑥 = +∞ → +∞ = 𝑥)
5755, 56breqtrd 4679 . . . . . . . . . . . . . . . . 17 (𝑥 = +∞ → 1 < 𝑥)
5857adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = +∞) → 1 < 𝑥)
5958ad2antrr 762 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 = +∞) ∧ 𝑦𝐴) ∧ 𝑦 < 1) → 1 < 𝑥)
6044, 46, 51, 52, 59xrlttrd 11990 . . . . . . . . . . . . . 14 ((((𝜑𝑥 = +∞) ∧ 𝑦𝐴) ∧ 𝑦 < 1) → 𝑦 < 𝑥)
6160ex 450 . . . . . . . . . . . . 13 (((𝜑𝑥 = +∞) ∧ 𝑦𝐴) → (𝑦 < 1 → 𝑦 < 𝑥))
6261ex 450 . . . . . . . . . . . 12 ((𝜑𝑥 = +∞) → (𝑦𝐴 → (𝑦 < 1 → 𝑦 < 𝑥)))
6341, 62reximdai 3012 . . . . . . . . . . 11 ((𝜑𝑥 = +∞) → (∃𝑦𝐴 𝑦 < 1 → ∃𝑦𝐴 𝑦 < 𝑥))
6463adantr 481 . . . . . . . . . 10 (((𝜑𝑥 = +∞) ∧ 𝐵 = -∞) → (∃𝑦𝐴 𝑦 < 1 → ∃𝑦𝐴 𝑦 < 𝑥))
6538, 64mpd 15 . . . . . . . . 9 (((𝜑𝑥 = +∞) ∧ 𝐵 = -∞) → ∃𝑦𝐴 𝑦 < 𝑥)
66653adantl3 1219 . . . . . . . 8 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ 𝐵 = -∞) → ∃𝑦𝐴 𝑦 < 𝑥)
671adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ ¬ 𝐵 = -∞) → 𝐵 ∈ ℝ*)
68673ad2antl1 1223 . . . . . . . . . . . . 13 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → 𝐵 ∈ ℝ*)
6924necon3bi 2820 . . . . . . . . . . . . . 14 𝐵 = -∞ → 𝐵 ≠ -∞)
7069adantl 482 . . . . . . . . . . . . 13 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → 𝐵 ≠ -∞)
7148a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → +∞ ∈ ℝ*)
72 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝑥 = +∞ ∧ 𝐵 < 𝑥) → 𝐵 < 𝑥)
73 simpl 473 . . . . . . . . . . . . . . . . 17 ((𝑥 = +∞ ∧ 𝐵 < 𝑥) → 𝑥 = +∞)
7472, 73breqtrd 4679 . . . . . . . . . . . . . . . 16 ((𝑥 = +∞ ∧ 𝐵 < 𝑥) → 𝐵 < +∞)
75743adant1 1079 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) → 𝐵 < +∞)
7675adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → 𝐵 < +∞)
7768, 71, 76xrltned 39573 . . . . . . . . . . . . 13 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → 𝐵 ≠ +∞)
7868, 70, 77xrred 39581 . . . . . . . . . . . 12 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → 𝐵 ∈ ℝ)
7925a1i 11 . . . . . . . . . . . 12 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → 1 ∈ ℝ)
8078, 79readdcld 10069 . . . . . . . . . . 11 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → (𝐵 + 1) ∈ ℝ)
814adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐵 = -∞) → ∀𝑥 ∈ ℝ (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
82813ad2antl1 1223 . . . . . . . . . . 11 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → ∀𝑥 ∈ ℝ (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
8380, 82jca 554 . . . . . . . . . 10 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → ((𝐵 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥)))
8478ltp1d 10954 . . . . . . . . . 10 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → 𝐵 < (𝐵 + 1))
85 breq2 4657 . . . . . . . . . . . 12 (𝑥 = (𝐵 + 1) → (𝐵 < 𝑥𝐵 < (𝐵 + 1)))
86 breq2 4657 . . . . . . . . . . . . 13 (𝑥 = (𝐵 + 1) → (𝑦 < 𝑥𝑦 < (𝐵 + 1)))
8786rexbidv 3052 . . . . . . . . . . . 12 (𝑥 = (𝐵 + 1) → (∃𝑦𝐴 𝑦 < 𝑥 ↔ ∃𝑦𝐴 𝑦 < (𝐵 + 1)))
8885, 87imbi12d 334 . . . . . . . . . . 11 (𝑥 = (𝐵 + 1) → ((𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥) ↔ (𝐵 < (𝐵 + 1) → ∃𝑦𝐴 𝑦 < (𝐵 + 1))))
8988rspcva 3307 . . . . . . . . . 10 (((𝐵 + 1) ∈ ℝ ∧ ∀𝑥 ∈ ℝ (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥)) → (𝐵 < (𝐵 + 1) → ∃𝑦𝐴 𝑦 < (𝐵 + 1)))
9083, 84, 89sylc 65 . . . . . . . . 9 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → ∃𝑦𝐴 𝑦 < (𝐵 + 1))
91 nfv 1843 . . . . . . . . . . . 12 𝑦 𝐵 < 𝑥
9239, 40, 91nf3an 1831 . . . . . . . . . . 11 𝑦(𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥)
93 nfv 1843 . . . . . . . . . . 11 𝑦 ¬ 𝐵 = -∞
9492, 93nfan 1828 . . . . . . . . . 10 𝑦((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞)
95433ad2antl1 1223 . . . . . . . . . . . . . 14 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ*)
9695ad4ant13 1292 . . . . . . . . . . . . 13 (((((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) ∧ 𝑦𝐴) ∧ 𝑦 < (𝐵 + 1)) → 𝑦 ∈ ℝ*)
9780adantr 481 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) ∧ 𝑦𝐴) → (𝐵 + 1) ∈ ℝ)
9897rexrd 10089 . . . . . . . . . . . . . 14 ((((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) ∧ 𝑦𝐴) → (𝐵 + 1) ∈ ℝ*)
9998adantr 481 . . . . . . . . . . . . 13 (((((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) ∧ 𝑦𝐴) ∧ 𝑦 < (𝐵 + 1)) → (𝐵 + 1) ∈ ℝ*)
100503adant3 1081 . . . . . . . . . . . . . 14 ((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) → 𝑥 ∈ ℝ*)
101100ad3antrrr 766 . . . . . . . . . . . . 13 (((((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) ∧ 𝑦𝐴) ∧ 𝑦 < (𝐵 + 1)) → 𝑥 ∈ ℝ*)
102 simpr 477 . . . . . . . . . . . . 13 (((((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) ∧ 𝑦𝐴) ∧ 𝑦 < (𝐵 + 1)) → 𝑦 < (𝐵 + 1))
10380ltpnfd 11955 . . . . . . . . . . . . . . 15 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → (𝐵 + 1) < +∞)
10456adantr 481 . . . . . . . . . . . . . . . 16 ((𝑥 = +∞ ∧ ¬ 𝐵 = -∞) → +∞ = 𝑥)
1051043ad2antl2 1224 . . . . . . . . . . . . . . 15 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → +∞ = 𝑥)
106103, 105breqtrd 4679 . . . . . . . . . . . . . 14 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → (𝐵 + 1) < 𝑥)
107106ad2antrr 762 . . . . . . . . . . . . 13 (((((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) ∧ 𝑦𝐴) ∧ 𝑦 < (𝐵 + 1)) → (𝐵 + 1) < 𝑥)
10896, 99, 101, 102, 107xrlttrd 11990 . . . . . . . . . . . 12 (((((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) ∧ 𝑦𝐴) ∧ 𝑦 < (𝐵 + 1)) → 𝑦 < 𝑥)
109108ex 450 . . . . . . . . . . 11 ((((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) ∧ 𝑦𝐴) → (𝑦 < (𝐵 + 1) → 𝑦 < 𝑥))
110109ex 450 . . . . . . . . . 10 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → (𝑦𝐴 → (𝑦 < (𝐵 + 1) → 𝑦 < 𝑥)))
11194, 110reximdai 3012 . . . . . . . . 9 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → (∃𝑦𝐴 𝑦 < (𝐵 + 1) → ∃𝑦𝐴 𝑦 < 𝑥))
11290, 111mpd 15 . . . . . . . 8 (((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) ∧ ¬ 𝐵 = -∞) → ∃𝑦𝐴 𝑦 < 𝑥)
11366, 112pm2.61dan 832 . . . . . . 7 ((𝜑𝑥 = +∞ ∧ 𝐵 < 𝑥) → ∃𝑦𝐴 𝑦 < 𝑥)
1147, 21, 22, 113syl3anc 1326 . . . . . 6 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ 𝑥 ∈ ℝ) ∧ 𝐵 < 𝑥) → ∃𝑦𝐴 𝑦 < 𝑥)
115114ex 450 . . . . 5 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ 𝑥 ∈ ℝ) → (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
1166, 115pm2.61dan 832 . . . 4 ((𝜑𝑥 ∈ ℝ*) → (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
117116ex 450 . . 3 (𝜑 → (𝑥 ∈ ℝ* → (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥)))
1183, 117ralrimi 2957 . 2 (𝜑 → ∀𝑥 ∈ ℝ* (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥))
119 xrltso 11974 . . . . 5 < Or ℝ*
120119a1i 11 . . . 4 (⊤ → < Or ℝ*)
121120eqinf 8390 . . 3 (⊤ → ((𝐵 ∈ ℝ* ∧ ∀𝑥𝐴 ¬ 𝑥 < 𝐵 ∧ ∀𝑥 ∈ ℝ* (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥)) → inf(𝐴, ℝ*, < ) = 𝐵))
122121trud 1493 . 2 ((𝐵 ∈ ℝ* ∧ ∀𝑥𝐴 ¬ 𝑥 < 𝐵 ∧ ∀𝑥 ∈ ℝ* (𝐵 < 𝑥 → ∃𝑦𝐴 𝑦 < 𝑥)) → inf(𝐴, ℝ*, < ) = 𝐵)
1231, 2, 118, 122syl3anc 1326 1 (𝜑 → inf(𝐴, ℝ*, < ) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1037   = wceq 1483  wtru 1484  wnf 1708  wcel 1990  wne 2794  wral 2912  wrex 2913  wss 3574   class class class wbr 4653   Or wor 5034  (class class class)co 6650  infcinf 8347  cr 9935  1c1 9937   + caddc 9939  +∞cpnf 10071  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269
This theorem is referenced by:  infxrunb2  39584
  Copyright terms: Public domain W3C validator