Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsuppnflem Structured version   Visualization version   GIF version

Theorem limsuppnflem 39942
Description: If the restriction of a function to every upper interval is unbounded above, its lim sup is +∞. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsuppnflem.j 𝑗𝐹
limsuppnflem.a (𝜑𝐴 ⊆ ℝ)
limsuppnflem.f (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
limsuppnflem (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hint:   𝐹(𝑗)

Proof of Theorem limsuppnflem
StepHypRef Expression
1 id 22 . . . . . . 7 (𝜑𝜑)
2 imnan 438 . . . . . . . . . . . . . 14 ((𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
32ralbii 2980 . . . . . . . . . . . . 13 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∀𝑗𝐴 ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4 ralnex 2992 . . . . . . . . . . . . 13 (∀𝑗𝐴 ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
53, 4bitri 264 . . . . . . . . . . . 12 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
65rexbii 3041 . . . . . . . . . . 11 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
7 rexnal 2995 . . . . . . . . . . 11 (∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
86, 7bitri 264 . . . . . . . . . 10 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
98rexbii 3041 . . . . . . . . 9 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
10 rexnal 2995 . . . . . . . . 9 (∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
119, 10bitri 264 . . . . . . . 8 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
1211biimpri 218 . . . . . . 7 (¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)))
13 simp1 1061 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑗) → (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴))
14 id 22 . . . . . . . . . . . . . . 15 ((𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) → (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)))
1514imp 445 . . . . . . . . . . . . . 14 (((𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑗) → ¬ 𝑥 ≤ (𝐹𝑗))
16153adant1 1079 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑗) → ¬ 𝑥 ≤ (𝐹𝑗))
17 limsuppnflem.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝐴⟶ℝ*)
1817ffvelrnda 6359 . . . . . . . . . . . . . . . 16 ((𝜑𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
1918ad4ant14 1293 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
2019adantr 481 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
21 simpllr 799 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ)
22 rexr 10085 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℝ → 𝑥 ∈ ℝ*)
2321, 22syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ*)
2423adantr 481 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ*)
25 simpr 477 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → ¬ 𝑥 ≤ (𝐹𝑗))
2618ad4ant13 1292 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ∈ ℝ*)
2722ad3antlr 767 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → 𝑥 ∈ ℝ*)
2826, 27xrltnled 39579 . . . . . . . . . . . . . . . 16 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → ((𝐹𝑗) < 𝑥 ↔ ¬ 𝑥 ≤ (𝐹𝑗)))
2925, 28mpbird 247 . . . . . . . . . . . . . . 15 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) < 𝑥)
3029adantllr 755 . . . . . . . . . . . . . 14 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) < 𝑥)
3120, 24, 30xrltled 39486 . . . . . . . . . . . . 13 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ ¬ 𝑥 ≤ (𝐹𝑗)) → (𝐹𝑗) ≤ 𝑥)
3213, 16, 31syl2anc 693 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) ∧ (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ∧ 𝑘𝑗) → (𝐹𝑗) ≤ 𝑥)
33323exp 1264 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) → (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
3433ralimdva 2962 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑘 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) → ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
3534reximdva 3017 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
3635reximdva 3017 . . . . . . . 8 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
3736imp 445 . . . . . . 7 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
381, 12, 37syl2an 494 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
39 reex 10027 . . . . . . . . . . . . . . 15 ℝ ∈ V
4039a1i 11 . . . . . . . . . . . . . 14 (𝜑 → ℝ ∈ V)
41 limsuppnflem.a . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ ℝ)
4240, 41ssexd 4805 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ V)
4317, 42fexd 39296 . . . . . . . . . . . 12 (𝜑𝐹 ∈ V)
4443limsupcld 39922 . . . . . . . . . . 11 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
4544ad2antrr 762 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (lim sup‘𝐹) ∈ ℝ*)
4622ad2antlr 763 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → 𝑥 ∈ ℝ*)
47 pnfxr 10092 . . . . . . . . . . 11 +∞ ∈ ℝ*
4847a1i 11 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → +∞ ∈ ℝ*)
49 limsuppnflem.j . . . . . . . . . . 11 𝑗𝐹
5041ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → 𝐴 ⊆ ℝ)
5117ad2antrr 762 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → 𝐹:𝐴⟶ℝ*)
52 simpr 477 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
5349, 50, 51, 46, 52limsupbnd1f 39918 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (lim sup‘𝐹) ≤ 𝑥)
54 ltpnf 11954 . . . . . . . . . . 11 (𝑥 ∈ ℝ → 𝑥 < +∞)
5554ad2antlr 763 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → 𝑥 < +∞)
5645, 46, 48, 53, 55xrlelttrd 11991 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (lim sup‘𝐹) < +∞)
5756ex 450 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → (lim sup‘𝐹) < +∞))
5857rexlimdva 3031 . . . . . . 7 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) → (lim sup‘𝐹) < +∞))
5958imp 445 . . . . . 6 ((𝜑 ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)) → (lim sup‘𝐹) < +∞)
6038, 59syldan 487 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (lim sup‘𝐹) < +∞)
6160adantlr 751 . . . 4 (((𝜑 ∧ (lim sup‘𝐹) = +∞) ∧ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (lim sup‘𝐹) < +∞)
62 id 22 . . . . . . . 8 ((lim sup‘𝐹) = +∞ → (lim sup‘𝐹) = +∞)
6347a1i 11 . . . . . . . 8 ((lim sup‘𝐹) = +∞ → +∞ ∈ ℝ*)
6462, 63eqeltrd 2701 . . . . . . 7 ((lim sup‘𝐹) = +∞ → (lim sup‘𝐹) ∈ ℝ*)
6564, 62xreqnltd 39618 . . . . . 6 ((lim sup‘𝐹) = +∞ → ¬ (lim sup‘𝐹) < +∞)
6665adantl 482 . . . . 5 ((𝜑 ∧ (lim sup‘𝐹) = +∞) → ¬ (lim sup‘𝐹) < +∞)
6766adantr 481 . . . 4 (((𝜑 ∧ (lim sup‘𝐹) = +∞) ∧ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ¬ (lim sup‘𝐹) < +∞)
6861, 67condan 835 . . 3 ((𝜑 ∧ (lim sup‘𝐹) = +∞) → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
6968ex 450 . 2 (𝜑 → ((lim sup‘𝐹) = +∞ → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
7041adantr 481 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝐴 ⊆ ℝ)
7117adantr 481 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → 𝐹:𝐴⟶ℝ*)
72 simpr 477 . . . 4 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
7349, 70, 71, 72limsuppnfd 39934 . . 3 ((𝜑 ∧ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))) → (lim sup‘𝐹) = +∞)
7473ex 450 . 2 (𝜑 → (∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) → (lim sup‘𝐹) = +∞))
7569, 74impbid 202 1 (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wnfc 2751  wral 2912  wrex 2913  Vcvv 3200  wss 3574   class class class wbr 4653  wf 5884  cfv 5888  cr 9935  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075  lim supclsp 14201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-ico 12181  df-limsup 14202
This theorem is referenced by:  limsuppnf  39943
  Copyright terms: Public domain W3C validator