Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimincfltioo Structured version   Visualization version   GIF version

Theorem pimincfltioo 40928
Description: Given a non decreasing function, the preimage of an unbounded below, open interval, when the supremum of the preimage does not belong to the preimage. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimincfltioo.x 𝑥𝜑
pimincfltioo.h 𝑦𝜑
pimincfltioo.a (𝜑𝐴 ⊆ ℝ)
pimincfltioo.f (𝜑𝐹:𝐴⟶ℝ*)
pimincfltioo.i (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
pimincfltioo.r (𝜑𝑅 ∈ ℝ*)
pimincfltioo.y 𝑌 = {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
pimincfltioo.c 𝑆 = sup(𝑌, ℝ*, < )
pimincfltioo.e (𝜑 → ¬ 𝑆𝑌)
pimincfltioo.d 𝐼 = (-∞(,)𝑆)
Assertion
Ref Expression
pimincfltioo (𝜑𝑌 = (𝐼𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑦,𝑌
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem pimincfltioo
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pimincfltioo.y . . . . . . 7 𝑌 = {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
2 ssrab2 3687 . . . . . . 7 {𝑥𝐴 ∣ (𝐹𝑥) < 𝑅} ⊆ 𝐴
31, 2eqsstri 3635 . . . . . 6 𝑌𝐴
43a1i 11 . . . . 5 (𝜑𝑌𝐴)
5 pimincfltioo.a . . . . 5 (𝜑𝐴 ⊆ ℝ)
64, 5sstrd 3613 . . . 4 (𝜑𝑌 ⊆ ℝ)
7 pimincfltioo.c . . . 4 𝑆 = sup(𝑌, ℝ*, < )
8 pimincfltioo.e . . . 4 (𝜑 → ¬ 𝑆𝑌)
9 pimincfltioo.d . . . 4 𝐼 = (-∞(,)𝑆)
106, 7, 8, 9ressioosup 39782 . . 3 (𝜑𝑌𝐼)
1110, 4ssind 3837 . 2 (𝜑𝑌 ⊆ (𝐼𝐴))
12 pimincfltioo.x . . . 4 𝑥𝜑
13 elinel2 3800 . . . . . . . 8 (𝑥 ∈ (𝐼𝐴) → 𝑥𝐴)
1413adantl 482 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝐴)
15 mnfxr 10096 . . . . . . . . . . 11 -∞ ∈ ℝ*
1615a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → -∞ ∈ ℝ*)
17 ressxr 10083 . . . . . . . . . . . . . 14 ℝ ⊆ ℝ*
186, 17syl6ss 3615 . . . . . . . . . . . . 13 (𝜑𝑌 ⊆ ℝ*)
1918supxrcld 39290 . . . . . . . . . . . 12 (𝜑 → sup(𝑌, ℝ*, < ) ∈ ℝ*)
207, 19syl5eqel 2705 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℝ*)
2120adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑆 ∈ ℝ*)
22 elinel1 3799 . . . . . . . . . . . 12 (𝑥 ∈ (𝐼𝐴) → 𝑥𝐼)
2322, 9syl6eleq 2711 . . . . . . . . . . 11 (𝑥 ∈ (𝐼𝐴) → 𝑥 ∈ (-∞(,)𝑆))
2423adantl 482 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥 ∈ (-∞(,)𝑆))
25 iooltub 39735 . . . . . . . . . 10 ((-∞ ∈ ℝ*𝑆 ∈ ℝ*𝑥 ∈ (-∞(,)𝑆)) → 𝑥 < 𝑆)
2616, 21, 24, 25syl3anc 1326 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥 < 𝑆)
2726adantr 481 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ (𝐹𝑥) < 𝑅) → 𝑥 < 𝑆)
28 simpr 477 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ (𝐹𝑥) < 𝑅) → ¬ (𝐹𝑥) < 𝑅)
29 pimincfltioo.r . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ ℝ*)
3029adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑅 ∈ ℝ*)
3130adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ (𝐹𝑥) < 𝑅) → 𝑅 ∈ ℝ*)
32 pimincfltioo.f . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝐴⟶ℝ*)
3332adantr 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝐹:𝐴⟶ℝ*)
3433, 14ffvelrnd 6360 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) ∈ ℝ*)
3534adantr 481 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ (𝐹𝑥) < 𝑅) → (𝐹𝑥) ∈ ℝ*)
3631, 35xrlenltd 10104 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ (𝐹𝑥) < 𝑅) → (𝑅 ≤ (𝐹𝑥) ↔ ¬ (𝐹𝑥) < 𝑅))
3728, 36mpbird 247 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ (𝐹𝑥) < 𝑅) → 𝑅 ≤ (𝐹𝑥))
38 pimincfltioo.h . . . . . . . . . . . . . . 15 𝑦𝜑
39 nfv 1843 . . . . . . . . . . . . . . 15 𝑦 𝑥 ∈ (𝐼𝐴)
4038, 39nfan 1828 . . . . . . . . . . . . . 14 𝑦(𝜑𝑥 ∈ (𝐼𝐴))
41 nfv 1843 . . . . . . . . . . . . . 14 𝑦 𝑅 ≤ (𝐹𝑥)
4240, 41nfan 1828 . . . . . . . . . . . . 13 𝑦((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑅 ≤ (𝐹𝑥))
43 fveq2 6191 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
4443breq1d 4663 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑦 → ((𝐹𝑥) < 𝑅 ↔ (𝐹𝑦) < 𝑅))
4544, 1elrab2 3366 . . . . . . . . . . . . . . . . . . 19 (𝑦𝑌 ↔ (𝑦𝐴 ∧ (𝐹𝑦) < 𝑅))
4645biimpi 206 . . . . . . . . . . . . . . . . . 18 (𝑦𝑌 → (𝑦𝐴 ∧ (𝐹𝑦) < 𝑅))
4746simprd 479 . . . . . . . . . . . . . . . . 17 (𝑦𝑌 → (𝐹𝑦) < 𝑅)
4847adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑦𝑌) → (𝐹𝑦) < 𝑅)
4948ad5ant14 1302 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑅 ≤ (𝐹𝑥)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → (𝐹𝑦) < 𝑅)
505adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝐴 ⊆ ℝ)
5150, 14sseldd 3604 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥 ∈ ℝ)
5251ad3antrrr 766 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑅 ≤ (𝐹𝑥)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑥 ∈ ℝ)
536sselda 3603 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝑌) → 𝑦 ∈ ℝ)
5453ad5ant14 1302 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑅 ≤ (𝐹𝑥)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑦 ∈ ℝ)
55 simpr 477 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → ¬ 𝑦𝑥)
5651ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑥 ∈ ℝ)
5753ad4ant13 1292 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑦 ∈ ℝ)
5856, 57ltnled 10184 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
5955, 58mpbird 247 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑥 < 𝑦)
6059adantllr 755 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑅 ≤ (𝐹𝑥)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑥 < 𝑦)
6152, 54, 60ltled 10185 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑅 ≤ (𝐹𝑥)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → 𝑥𝑦)
6230ad3antrrr 766 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑅 ≤ (𝐹𝑥)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → 𝑅 ∈ ℝ*)
6334ad3antrrr 766 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑅 ≤ (𝐹𝑥)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝐹𝑥) ∈ ℝ*)
6432adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝑌) → 𝐹:𝐴⟶ℝ*)
654sselda 3603 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝑌) → 𝑦𝐴)
6664, 65ffvelrnd 6360 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦𝑌) → (𝐹𝑦) ∈ ℝ*)
6766ad5ant14 1302 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑅 ≤ (𝐹𝑥)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝐹𝑦) ∈ ℝ*)
68 simpllr 799 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑅 ≤ (𝐹𝑥)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → 𝑅 ≤ (𝐹𝑥))
69 nfv 1843 . . . . . . . . . . . . . . . . . . . 20 𝑤(((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ 𝑥𝑦)
70 nfv 1843 . . . . . . . . . . . . . . . . . . . 20 𝑧(((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ 𝑥𝑦)
71 pimincfltioo.i . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
72 breq1 4656 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑥 → (𝑤𝑧𝑥𝑧))
73 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑤 = 𝑥 → (𝐹𝑤) = (𝐹𝑥))
7473breq1d 4663 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑤 = 𝑥 → ((𝐹𝑤) ≤ (𝐹𝑧) ↔ (𝐹𝑥) ≤ (𝐹𝑧)))
7572, 74imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤 = 𝑥 → ((𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧)) ↔ (𝑥𝑧 → (𝐹𝑥) ≤ (𝐹𝑧))))
76 breq2 4657 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑦 → (𝑥𝑧𝑥𝑦))
77 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 = 𝑦 → (𝐹𝑧) = (𝐹𝑦))
7877breq2d 4665 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑧 = 𝑦 → ((𝐹𝑥) ≤ (𝐹𝑧) ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
7976, 78imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 = 𝑦 → ((𝑥𝑧 → (𝐹𝑥) ≤ (𝐹𝑧)) ↔ (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦))))
8075, 79cbvral2v 3179 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≤ (𝐹𝑦)))
8171, 80sylibr 224 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧)))
8281ad3antrrr 766 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → ∀𝑤𝐴𝑧𝐴 (𝑤𝑧 → (𝐹𝑤) ≤ (𝐹𝑧)))
8314ad2antrr 762 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → 𝑥𝐴)
8465ad4ant13 1292 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → 𝑦𝐴)
85 simpr 477 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → 𝑥𝑦)
8669, 70, 82, 83, 84, 85dmrelrnrel 39419 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝐹𝑥) ≤ (𝐹𝑦))
8786adantllr 755 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑅 ≤ (𝐹𝑥)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝐹𝑥) ≤ (𝐹𝑦))
8862, 63, 67, 68, 87xrletrd 11993 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑅 ≤ (𝐹𝑥)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → 𝑅 ≤ (𝐹𝑦))
8962, 67xrlenltd 10104 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑅 ≤ (𝐹𝑥)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → (𝑅 ≤ (𝐹𝑦) ↔ ¬ (𝐹𝑦) < 𝑅))
9088, 89mpbid 222 . . . . . . . . . . . . . . . 16 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑅 ≤ (𝐹𝑥)) ∧ 𝑦𝑌) ∧ 𝑥𝑦) → ¬ (𝐹𝑦) < 𝑅)
9161, 90syldan 487 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑅 ≤ (𝐹𝑥)) ∧ 𝑦𝑌) ∧ ¬ 𝑦𝑥) → ¬ (𝐹𝑦) < 𝑅)
9249, 91condan 835 . . . . . . . . . . . . . 14 ((((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑅 ≤ (𝐹𝑥)) ∧ 𝑦𝑌) → 𝑦𝑥)
9392ex 450 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑅 ≤ (𝐹𝑥)) → (𝑦𝑌𝑦𝑥))
9442, 93ralrimi 2957 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ 𝑅 ≤ (𝐹𝑥)) → ∀𝑦𝑌 𝑦𝑥)
9537, 94syldan 487 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ (𝐹𝑥) < 𝑅) → ∀𝑦𝑌 𝑦𝑥)
9618adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑌 ⊆ ℝ*)
9717, 51sseldi 3601 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥 ∈ ℝ*)
98 supxrleub 12156 . . . . . . . . . . . . 13 ((𝑌 ⊆ ℝ*𝑥 ∈ ℝ*) → (sup(𝑌, ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦𝑌 𝑦𝑥))
9996, 97, 98syl2anc 693 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (𝐼𝐴)) → (sup(𝑌, ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦𝑌 𝑦𝑥))
10099adantr 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ (𝐹𝑥) < 𝑅) → (sup(𝑌, ℝ*, < ) ≤ 𝑥 ↔ ∀𝑦𝑌 𝑦𝑥))
10195, 100mpbird 247 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ (𝐹𝑥) < 𝑅) → sup(𝑌, ℝ*, < ) ≤ 𝑥)
1027, 101syl5eqbr 4688 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ (𝐹𝑥) < 𝑅) → 𝑆𝑥)
10321adantr 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ (𝐹𝑥) < 𝑅) → 𝑆 ∈ ℝ*)
10497adantr 481 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ (𝐹𝑥) < 𝑅) → 𝑥 ∈ ℝ*)
105103, 104xrlenltd 10104 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ (𝐹𝑥) < 𝑅) → (𝑆𝑥 ↔ ¬ 𝑥 < 𝑆))
106102, 105mpbid 222 . . . . . . . 8 (((𝜑𝑥 ∈ (𝐼𝐴)) ∧ ¬ (𝐹𝑥) < 𝑅) → ¬ 𝑥 < 𝑆)
10727, 106condan 835 . . . . . . 7 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝐹𝑥) < 𝑅)
10814, 107jca 554 . . . . . 6 ((𝜑𝑥 ∈ (𝐼𝐴)) → (𝑥𝐴 ∧ (𝐹𝑥) < 𝑅))
1091rabeq2i 3197 . . . . . 6 (𝑥𝑌 ↔ (𝑥𝐴 ∧ (𝐹𝑥) < 𝑅))
110108, 109sylibr 224 . . . . 5 ((𝜑𝑥 ∈ (𝐼𝐴)) → 𝑥𝑌)
111110ex 450 . . . 4 (𝜑 → (𝑥 ∈ (𝐼𝐴) → 𝑥𝑌))
11212, 111ralrimi 2957 . . 3 (𝜑 → ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
113 nfcv 2764 . . . 4 𝑥(𝐼𝐴)
114 nfrab1 3122 . . . . 5 𝑥{𝑥𝐴 ∣ (𝐹𝑥) < 𝑅}
1151, 114nfcxfr 2762 . . . 4 𝑥𝑌
116113, 115dfss3f 3595 . . 3 ((𝐼𝐴) ⊆ 𝑌 ↔ ∀𝑥 ∈ (𝐼𝐴)𝑥𝑌)
117112, 116sylibr 224 . 2 (𝜑 → (𝐼𝐴) ⊆ 𝑌)
11811, 117eqssd 3620 1 (𝜑𝑌 = (𝐼𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1483  wnf 1708  wcel 1990  wral 2912  {crab 2916  cin 3573  wss 3574   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  supcsup 8346  cr 9935  -∞cmnf 10072  *cxr 10073   < clt 10074  cle 10075  (,)cioo 12175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-ioo 12179
This theorem is referenced by:  incsmflem  40950
  Copyright terms: Public domain W3C validator