Proof of Theorem alephadd
| Step | Hyp | Ref
| Expression |
| 1 | | ovex 6678 |
. . . 4
⊢
((ℵ‘𝐴)
+𝑐 (ℵ‘𝐵)) ∈ V |
| 2 | | alephfnon 8888 |
. . . . . . . 8
⊢ ℵ
Fn On |
| 3 | | fndm 5990 |
. . . . . . . 8
⊢ (ℵ
Fn On → dom ℵ = On) |
| 4 | 2, 3 | ax-mp 5 |
. . . . . . 7
⊢ dom
ℵ = On |
| 5 | 4 | eleq2i 2693 |
. . . . . 6
⊢ (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On) |
| 6 | 5 | notbii 310 |
. . . . 5
⊢ (¬
𝐴 ∈ dom ℵ ↔
¬ 𝐴 ∈
On) |
| 7 | 4 | eleq2i 2693 |
. . . . . 6
⊢ (𝐵 ∈ dom ℵ ↔ 𝐵 ∈ On) |
| 8 | 7 | notbii 310 |
. . . . 5
⊢ (¬
𝐵 ∈ dom ℵ ↔
¬ 𝐵 ∈
On) |
| 9 | | 0ex 4790 |
. . . . . . . 8
⊢ ∅
∈ V |
| 10 | | cdaval 8992 |
. . . . . . . 8
⊢ ((∅
∈ V ∧ ∅ ∈ V) → (∅ +𝑐 ∅)
= ((∅ × {∅}) ∪ (∅ ×
{1𝑜}))) |
| 11 | 9, 9, 10 | mp2an 708 |
. . . . . . 7
⊢ (∅
+𝑐 ∅) = ((∅ × {∅}) ∪ (∅
× {1𝑜})) |
| 12 | | xpundi 5171 |
. . . . . . 7
⊢ (∅
× ({∅} ∪ {1𝑜})) = ((∅ ×
{∅}) ∪ (∅ × {1𝑜})) |
| 13 | | 0xp 5199 |
. . . . . . 7
⊢ (∅
× ({∅} ∪ {1𝑜})) = ∅ |
| 14 | 11, 12, 13 | 3eqtr2i 2650 |
. . . . . 6
⊢ (∅
+𝑐 ∅) = ∅ |
| 15 | | ndmfv 6218 |
. . . . . . 7
⊢ (¬
𝐴 ∈ dom ℵ →
(ℵ‘𝐴) =
∅) |
| 16 | | ndmfv 6218 |
. . . . . . 7
⊢ (¬
𝐵 ∈ dom ℵ →
(ℵ‘𝐵) =
∅) |
| 17 | 15, 16 | oveqan12d 6669 |
. . . . . 6
⊢ ((¬
𝐴 ∈ dom ℵ ∧
¬ 𝐵 ∈ dom ℵ)
→ ((ℵ‘𝐴)
+𝑐 (ℵ‘𝐵)) = (∅ +𝑐
∅)) |
| 18 | 15 | adantr 481 |
. . . . . . . 8
⊢ ((¬
𝐴 ∈ dom ℵ ∧
¬ 𝐵 ∈ dom ℵ)
→ (ℵ‘𝐴) =
∅) |
| 19 | 16 | adantl 482 |
. . . . . . . 8
⊢ ((¬
𝐴 ∈ dom ℵ ∧
¬ 𝐵 ∈ dom ℵ)
→ (ℵ‘𝐵) =
∅) |
| 20 | 18, 19 | uneq12d 3768 |
. . . . . . 7
⊢ ((¬
𝐴 ∈ dom ℵ ∧
¬ 𝐵 ∈ dom ℵ)
→ ((ℵ‘𝐴)
∪ (ℵ‘𝐵)) =
(∅ ∪ ∅)) |
| 21 | | un0 3967 |
. . . . . . 7
⊢ (∅
∪ ∅) = ∅ |
| 22 | 20, 21 | syl6eq 2672 |
. . . . . 6
⊢ ((¬
𝐴 ∈ dom ℵ ∧
¬ 𝐵 ∈ dom ℵ)
→ ((ℵ‘𝐴)
∪ (ℵ‘𝐵)) =
∅) |
| 23 | 14, 17, 22 | 3eqtr4a 2682 |
. . . . 5
⊢ ((¬
𝐴 ∈ dom ℵ ∧
¬ 𝐵 ∈ dom ℵ)
→ ((ℵ‘𝐴)
+𝑐 (ℵ‘𝐵)) = ((ℵ‘𝐴) ∪ (ℵ‘𝐵))) |
| 24 | 6, 8, 23 | syl2anbr 497 |
. . . 4
⊢ ((¬
𝐴 ∈ On ∧ ¬
𝐵 ∈ On) →
((ℵ‘𝐴)
+𝑐 (ℵ‘𝐵)) = ((ℵ‘𝐴) ∪ (ℵ‘𝐵))) |
| 25 | | eqeng 7989 |
. . . 4
⊢
(((ℵ‘𝐴)
+𝑐 (ℵ‘𝐵)) ∈ V → (((ℵ‘𝐴) +𝑐
(ℵ‘𝐵)) =
((ℵ‘𝐴) ∪
(ℵ‘𝐵)) →
((ℵ‘𝐴)
+𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))) |
| 26 | 1, 24, 25 | mpsyl 68 |
. . 3
⊢ ((¬
𝐴 ∈ On ∧ ¬
𝐵 ∈ On) →
((ℵ‘𝐴)
+𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))) |
| 27 | 26 | ex 450 |
. 2
⊢ (¬
𝐴 ∈ On → (¬
𝐵 ∈ On →
((ℵ‘𝐴)
+𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))) |
| 28 | | alephgeom 8905 |
. . 3
⊢ (𝐴 ∈ On ↔ ω
⊆ (ℵ‘𝐴)) |
| 29 | | fvex 6201 |
. . . . 5
⊢
(ℵ‘𝐴)
∈ V |
| 30 | | ssdomg 8001 |
. . . . 5
⊢
((ℵ‘𝐴)
∈ V → (ω ⊆ (ℵ‘𝐴) → ω ≼
(ℵ‘𝐴))) |
| 31 | 29, 30 | ax-mp 5 |
. . . 4
⊢ (ω
⊆ (ℵ‘𝐴)
→ ω ≼ (ℵ‘𝐴)) |
| 32 | | alephon 8892 |
. . . . . 6
⊢
(ℵ‘𝐴)
∈ On |
| 33 | | onenon 8775 |
. . . . . 6
⊢
((ℵ‘𝐴)
∈ On → (ℵ‘𝐴) ∈ dom card) |
| 34 | 32, 33 | ax-mp 5 |
. . . . 5
⊢
(ℵ‘𝐴)
∈ dom card |
| 35 | | alephon 8892 |
. . . . . 6
⊢
(ℵ‘𝐵)
∈ On |
| 36 | | onenon 8775 |
. . . . . 6
⊢
((ℵ‘𝐵)
∈ On → (ℵ‘𝐵) ∈ dom card) |
| 37 | 35, 36 | ax-mp 5 |
. . . . 5
⊢
(ℵ‘𝐵)
∈ dom card |
| 38 | | infcda 9030 |
. . . . 5
⊢
(((ℵ‘𝐴)
∈ dom card ∧ (ℵ‘𝐵) ∈ dom card ∧ ω ≼
(ℵ‘𝐴)) →
((ℵ‘𝐴)
+𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))) |
| 39 | 34, 37, 38 | mp3an12 1414 |
. . . 4
⊢ (ω
≼ (ℵ‘𝐴)
→ ((ℵ‘𝐴)
+𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))) |
| 40 | 31, 39 | syl 17 |
. . 3
⊢ (ω
⊆ (ℵ‘𝐴)
→ ((ℵ‘𝐴)
+𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))) |
| 41 | 28, 40 | sylbi 207 |
. 2
⊢ (𝐴 ∈ On →
((ℵ‘𝐴)
+𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))) |
| 42 | | alephgeom 8905 |
. . 3
⊢ (𝐵 ∈ On ↔ ω
⊆ (ℵ‘𝐵)) |
| 43 | | fvex 6201 |
. . . . 5
⊢
(ℵ‘𝐵)
∈ V |
| 44 | | ssdomg 8001 |
. . . . 5
⊢
((ℵ‘𝐵)
∈ V → (ω ⊆ (ℵ‘𝐵) → ω ≼
(ℵ‘𝐵))) |
| 45 | 43, 44 | ax-mp 5 |
. . . 4
⊢ (ω
⊆ (ℵ‘𝐵)
→ ω ≼ (ℵ‘𝐵)) |
| 46 | | cdacomen 9003 |
. . . . . 6
⊢
((ℵ‘𝐴)
+𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) +𝑐 (ℵ‘𝐴)) |
| 47 | | infcda 9030 |
. . . . . . 7
⊢
(((ℵ‘𝐵)
∈ dom card ∧ (ℵ‘𝐴) ∈ dom card ∧ ω ≼
(ℵ‘𝐵)) →
((ℵ‘𝐵)
+𝑐 (ℵ‘𝐴)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴))) |
| 48 | 37, 34, 47 | mp3an12 1414 |
. . . . . 6
⊢ (ω
≼ (ℵ‘𝐵)
→ ((ℵ‘𝐵)
+𝑐 (ℵ‘𝐴)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴))) |
| 49 | | entr 8008 |
. . . . . 6
⊢
((((ℵ‘𝐴)
+𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) +𝑐 (ℵ‘𝐴)) ∧ ((ℵ‘𝐵) +𝑐
(ℵ‘𝐴)) ≈
((ℵ‘𝐵) ∪
(ℵ‘𝐴))) →
((ℵ‘𝐴)
+𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴))) |
| 50 | 46, 48, 49 | sylancr 695 |
. . . . 5
⊢ (ω
≼ (ℵ‘𝐵)
→ ((ℵ‘𝐴)
+𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴))) |
| 51 | | uncom 3757 |
. . . . 5
⊢
((ℵ‘𝐵)
∪ (ℵ‘𝐴)) =
((ℵ‘𝐴) ∪
(ℵ‘𝐵)) |
| 52 | 50, 51 | syl6breq 4694 |
. . . 4
⊢ (ω
≼ (ℵ‘𝐵)
→ ((ℵ‘𝐴)
+𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))) |
| 53 | 45, 52 | syl 17 |
. . 3
⊢ (ω
⊆ (ℵ‘𝐵)
→ ((ℵ‘𝐴)
+𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))) |
| 54 | 42, 53 | sylbi 207 |
. 2
⊢ (𝐵 ∈ On →
((ℵ‘𝐴)
+𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))) |
| 55 | 27, 41, 54 | pm2.61ii 177 |
1
⊢
((ℵ‘𝐴)
+𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)) |