MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephadd Structured version   Visualization version   GIF version

Theorem alephadd 9399
Description: The sum of two alephs is their maximum. Equation 6.1 of [Jech] p. 42. (Contributed by NM, 29-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
alephadd ((ℵ‘𝐴) +𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))

Proof of Theorem alephadd
StepHypRef Expression
1 ovex 6678 . . . 4 ((ℵ‘𝐴) +𝑐 (ℵ‘𝐵)) ∈ V
2 alephfnon 8888 . . . . . . . 8 ℵ Fn On
3 fndm 5990 . . . . . . . 8 (ℵ Fn On → dom ℵ = On)
42, 3ax-mp 5 . . . . . . 7 dom ℵ = On
54eleq2i 2693 . . . . . 6 (𝐴 ∈ dom ℵ ↔ 𝐴 ∈ On)
65notbii 310 . . . . 5 𝐴 ∈ dom ℵ ↔ ¬ 𝐴 ∈ On)
74eleq2i 2693 . . . . . 6 (𝐵 ∈ dom ℵ ↔ 𝐵 ∈ On)
87notbii 310 . . . . 5 𝐵 ∈ dom ℵ ↔ ¬ 𝐵 ∈ On)
9 0ex 4790 . . . . . . . 8 ∅ ∈ V
10 cdaval 8992 . . . . . . . 8 ((∅ ∈ V ∧ ∅ ∈ V) → (∅ +𝑐 ∅) = ((∅ × {∅}) ∪ (∅ × {1𝑜})))
119, 9, 10mp2an 708 . . . . . . 7 (∅ +𝑐 ∅) = ((∅ × {∅}) ∪ (∅ × {1𝑜}))
12 xpundi 5171 . . . . . . 7 (∅ × ({∅} ∪ {1𝑜})) = ((∅ × {∅}) ∪ (∅ × {1𝑜}))
13 0xp 5199 . . . . . . 7 (∅ × ({∅} ∪ {1𝑜})) = ∅
1411, 12, 133eqtr2i 2650 . . . . . 6 (∅ +𝑐 ∅) = ∅
15 ndmfv 6218 . . . . . . 7 𝐴 ∈ dom ℵ → (ℵ‘𝐴) = ∅)
16 ndmfv 6218 . . . . . . 7 𝐵 ∈ dom ℵ → (ℵ‘𝐵) = ∅)
1715, 16oveqan12d 6669 . . . . . 6 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → ((ℵ‘𝐴) +𝑐 (ℵ‘𝐵)) = (∅ +𝑐 ∅))
1815adantr 481 . . . . . . . 8 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → (ℵ‘𝐴) = ∅)
1916adantl 482 . . . . . . . 8 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → (ℵ‘𝐵) = ∅)
2018, 19uneq12d 3768 . . . . . . 7 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → ((ℵ‘𝐴) ∪ (ℵ‘𝐵)) = (∅ ∪ ∅))
21 un0 3967 . . . . . . 7 (∅ ∪ ∅) = ∅
2220, 21syl6eq 2672 . . . . . 6 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → ((ℵ‘𝐴) ∪ (ℵ‘𝐵)) = ∅)
2314, 17, 223eqtr4a 2682 . . . . 5 ((¬ 𝐴 ∈ dom ℵ ∧ ¬ 𝐵 ∈ dom ℵ) → ((ℵ‘𝐴) +𝑐 (ℵ‘𝐵)) = ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
246, 8, 23syl2anbr 497 . . . 4 ((¬ 𝐴 ∈ On ∧ ¬ 𝐵 ∈ On) → ((ℵ‘𝐴) +𝑐 (ℵ‘𝐵)) = ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
25 eqeng 7989 . . . 4 (((ℵ‘𝐴) +𝑐 (ℵ‘𝐵)) ∈ V → (((ℵ‘𝐴) +𝑐 (ℵ‘𝐵)) = ((ℵ‘𝐴) ∪ (ℵ‘𝐵)) → ((ℵ‘𝐴) +𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))))
261, 24, 25mpsyl 68 . . 3 ((¬ 𝐴 ∈ On ∧ ¬ 𝐵 ∈ On) → ((ℵ‘𝐴) +𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
2726ex 450 . 2 𝐴 ∈ On → (¬ 𝐵 ∈ On → ((ℵ‘𝐴) +𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))))
28 alephgeom 8905 . . 3 (𝐴 ∈ On ↔ ω ⊆ (ℵ‘𝐴))
29 fvex 6201 . . . . 5 (ℵ‘𝐴) ∈ V
30 ssdomg 8001 . . . . 5 ((ℵ‘𝐴) ∈ V → (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴)))
3129, 30ax-mp 5 . . . 4 (ω ⊆ (ℵ‘𝐴) → ω ≼ (ℵ‘𝐴))
32 alephon 8892 . . . . . 6 (ℵ‘𝐴) ∈ On
33 onenon 8775 . . . . . 6 ((ℵ‘𝐴) ∈ On → (ℵ‘𝐴) ∈ dom card)
3432, 33ax-mp 5 . . . . 5 (ℵ‘𝐴) ∈ dom card
35 alephon 8892 . . . . . 6 (ℵ‘𝐵) ∈ On
36 onenon 8775 . . . . . 6 ((ℵ‘𝐵) ∈ On → (ℵ‘𝐵) ∈ dom card)
3735, 36ax-mp 5 . . . . 5 (ℵ‘𝐵) ∈ dom card
38 infcda 9030 . . . . 5 (((ℵ‘𝐴) ∈ dom card ∧ (ℵ‘𝐵) ∈ dom card ∧ ω ≼ (ℵ‘𝐴)) → ((ℵ‘𝐴) +𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
3934, 37, 38mp3an12 1414 . . . 4 (ω ≼ (ℵ‘𝐴) → ((ℵ‘𝐴) +𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
4031, 39syl 17 . . 3 (ω ⊆ (ℵ‘𝐴) → ((ℵ‘𝐴) +𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
4128, 40sylbi 207 . 2 (𝐴 ∈ On → ((ℵ‘𝐴) +𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
42 alephgeom 8905 . . 3 (𝐵 ∈ On ↔ ω ⊆ (ℵ‘𝐵))
43 fvex 6201 . . . . 5 (ℵ‘𝐵) ∈ V
44 ssdomg 8001 . . . . 5 ((ℵ‘𝐵) ∈ V → (ω ⊆ (ℵ‘𝐵) → ω ≼ (ℵ‘𝐵)))
4543, 44ax-mp 5 . . . 4 (ω ⊆ (ℵ‘𝐵) → ω ≼ (ℵ‘𝐵))
46 cdacomen 9003 . . . . . 6 ((ℵ‘𝐴) +𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) +𝑐 (ℵ‘𝐴))
47 infcda 9030 . . . . . . 7 (((ℵ‘𝐵) ∈ dom card ∧ (ℵ‘𝐴) ∈ dom card ∧ ω ≼ (ℵ‘𝐵)) → ((ℵ‘𝐵) +𝑐 (ℵ‘𝐴)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴)))
4837, 34, 47mp3an12 1414 . . . . . 6 (ω ≼ (ℵ‘𝐵) → ((ℵ‘𝐵) +𝑐 (ℵ‘𝐴)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴)))
49 entr 8008 . . . . . 6 ((((ℵ‘𝐴) +𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) +𝑐 (ℵ‘𝐴)) ∧ ((ℵ‘𝐵) +𝑐 (ℵ‘𝐴)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴))) → ((ℵ‘𝐴) +𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴)))
5046, 48, 49sylancr 695 . . . . 5 (ω ≼ (ℵ‘𝐵) → ((ℵ‘𝐴) +𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐵) ∪ (ℵ‘𝐴)))
51 uncom 3757 . . . . 5 ((ℵ‘𝐵) ∪ (ℵ‘𝐴)) = ((ℵ‘𝐴) ∪ (ℵ‘𝐵))
5250, 51syl6breq 4694 . . . 4 (ω ≼ (ℵ‘𝐵) → ((ℵ‘𝐴) +𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
5345, 52syl 17 . . 3 (ω ⊆ (ℵ‘𝐵) → ((ℵ‘𝐴) +𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
5442, 53sylbi 207 . 2 (𝐵 ∈ On → ((ℵ‘𝐴) +𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵)))
5527, 41, 54pm2.61ii 177 1 ((ℵ‘𝐴) +𝑐 (ℵ‘𝐵)) ≈ ((ℵ‘𝐴) ∪ (ℵ‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  wss 3574  c0 3915  {csn 4177   class class class wbr 4653   × cxp 5112  dom cdm 5114  Oncon0 5723   Fn wfn 5883  cfv 5888  (class class class)co 6650  ωcom 7065  1𝑜c1o 7553  cen 7952  cdom 7953  cardccrd 8761  cale 8762   +𝑐 ccda 8989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-har 8463  df-card 8765  df-aleph 8766  df-cda 8990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator